Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 6 de 6
1.
Viruses ; 15(4)2023 04 06.
Article En | MEDLINE | ID: mdl-37112906

Endogenous retroviruses (ERVs) account for 8% of our genome, and, although they are usually silent in healthy tissues, they become reactivated and expressed in pathological conditions such as cancer. Several studies support a functional role of ERVs in tumour development and progression, specifically through their envelope (Env) protein, which contains a region described as an immunosuppressive domain (ISD). We have previously shown that targeting of the murine ERV (MelARV) Env using virus-like vaccine (VLV) technology, consisting of an adenoviral vector encoding virus-like particles (VLPs), induces protection against small tumours in mice. Here, we investigate the potency and efficacy of a novel MelARV VLV with a mutated ISD (ISDmut) that can modify the properties of the adenoviral vaccine-encoded Env protein. We show that the modification of the vaccine's ISD significantly enhanced T-cell immunogenicity in both prime and prime-boost vaccination regimens. The modified VLV in combination with an α-PD1 checkpoint inhibitor (CPI) exhibited excellent curative efficacy against large established colorectal CT26 tumours in mice. Furthermore, only ISDmut-vaccinated mice that survived CT26 challenge were additionally protected against rechallenge with a triple-negative breast cancer cell line (4T1), showing that our modified VLV provides cross-protection against different tumour types expressing ERV-derived antigens. We envision that translating these findings and technology into human ERVs (HERVs) could provide new treatment opportunities for cancer patients with unmet medical needs.


Endogenous Retroviruses , Neoplasms , Viral Vaccines , Animals , Humans , Mice , Endogenous Retroviruses/genetics , Genetic Vectors/genetics , Neoplasms/prevention & control , Neoplasms/genetics , T-Lymphocytes , Viral Vaccines/genetics , Programmed Cell Death 1 Receptor/immunology
2.
Int J Mol Sci ; 23(3)2022 Jan 25.
Article En | MEDLINE | ID: mdl-35163254

Human endogenous retroviruses (HERVs) are remnants of ancient retroviral infections that have become fixed in the human genome. While HERV genes are typically silenced in healthy somatic cells, there are numerous reports of HERV transcription and translation across a wide spectrum of cancers, while T and B cell responses against HERV proteins have been detected in cancer patients. This review systematically categorizes the published evidence on the expression of and adaptive immune response against specific HERVs in distinct cancer types. A systematic literature search was performed using Medical Search Headings (MeSH) in the PubMed/Medline database. Papers were included if they described the translational activity of HERVs. We present multiple tables that pair the protein expression of specific HERVs and cancer types with information on the quality of the evidence. We find that HERV-K is the most investigated HERV. HERV-W (syncytin-1) is the second-most investigated, while other HERVs have received less attention. From a therapeutic perspective, HERV-K and HERV-E are the only HERVs with experimental demonstration of effective targeted therapies, but unspecific approaches using antiviral and demethylating agents in combination with chemo- and immunotherapies have also been investigated.


Antibody Formation/immunology , Endogenous Retroviruses/immunology , Neoplasms/immunology , Neoplasms/therapy , Retroviridae Infections/immunology , Viral Proteins/immunology , Animals , Host-Pathogen Interactions/immunology , Humans
3.
Vaccines (Basel) ; 9(11)2021 Nov 01.
Article En | MEDLINE | ID: mdl-34835193

Human papillomavirus (HPV) infection is the cause of the majority of cervical cancers and head and neck cancers worldwide. Although prophylactic vaccines and cervical cancer screening programs have shown efficacy in preventing HPV-associated cervical cancer, cervical cancer is still a major cause of morbidity and mortality, especially in third world countries. Furthermore, head and neck cancer cases caused by HPV infection and associated mortality are increasing. The need for better therapy is clear, and therapeutic vaccination generating cytotoxic T cells against HPV proteins is a promising strategy. This review covers the current scene of HPV therapeutic vaccines in clinical development and discusses relevant considerations for the design of future HPV therapeutic vaccines and clinical trials, such as HPV protein expression patterns, immunogenicity, and exhaustion in relation to the different stages and types of HPV-associated lesions and cancers. Ultimately, while the majority of the HPV therapeutic vaccines currently in clinical testing target the two HPV oncoproteins E6 and E7, we suggest that there is a need to include more HPV antigens in future HPV therapeutic vaccines to increase efficacy and find that especially E1 and E2 could be promising novel targets.

5.
Mol Metab ; 11: 178-188, 2018 05.
Article En | MEDLINE | ID: mdl-29551635

OBJECTIVE: The ability of adipose tissue to expand and contract in response to fluctuations in nutrient availability is essential for the maintenance of whole-body metabolic homeostasis. Given the nutrient scarcity that mammals faced for millions of years, programs involved in this adipose plasticity were likely evolved to be highly efficient in promoting lipid storage. Ironically, this previously advantageous feature may now represent a metabolic liability given the caloric excess of modern society. We speculate that nicotinamide adenine dinucleotide (NAD+) biosynthesis exemplifies this concept. Indeed NAD+/NADH metabolism in fat tissue has been previously linked with obesity, yet whether it plays a causal role in diet-induced adiposity is unknown. Here we investigated how the NAD+ biosynthetic enzyme nicotinamide phosphoribosyltransferase (NAMPT) supports adipose plasticity and the pathological progression to obesity. METHODS: We utilized a newly generated Nampt loss-of-function model to investigate the tissue-specific and systemic metabolic consequences of adipose NAD+ deficiency. Energy expenditure, glycemic control, tissue structure, and gene expression were assessed in the contexts of a high dietary fat burden as well as the transition back to normal chow diet. RESULTS: Fat-specific Nampt knockout (FANKO) mice were completely resistant to high fat diet (HFD)-induced obesity. This was driven in part by reduced food intake. Furthermore, HFD-fed FANKO mice were unable to undergo healthy expansion of adipose tissue mass, and adipose depots were rendered fibrotic with markedly reduced mitochondrial respiratory capacity. Yet, surprisingly, HFD-fed FANKO mice exhibited improved glucose tolerance compared to control littermates. Removing the HFD burden largely reversed adipose fibrosis and dysfunction in FANKO animals whereas the improved glucose tolerance persisted. CONCLUSIONS: These findings indicate that adipose NAMPT plays an essential role in handling dietary lipid to modulate fat tissue plasticity, food intake, and systemic glucose homeostasis.


Adipose Tissue/metabolism , Cytokines/metabolism , NAD/biosynthesis , Nicotinamide Phosphoribosyltransferase/metabolism , Obesity/metabolism , Animals , Cells, Cultured , Cytokines/genetics , Diet, High-Fat/adverse effects , Energy Metabolism , Glucose/metabolism , Loss of Function Mutation , Male , Mice , Mice, Inbred C57BL , Nicotinamide Phosphoribosyltransferase/genetics , Obesity/etiology
6.
Mol Ther ; 22(12): 2107-2117, 2014 Dec.
Article En | MEDLINE | ID: mdl-25023330

We have previously shown that for the majority of antigens, adenoviral vaccines expressing the target antigen fused to the MHC associated invariant chain (Ii) induce an accelerated, augmented, and prolonged transgene-specific CD8(+) T-cell response. Here we describe a new adenoviral vaccine vector approach where the target antigen fused to Ii is expressed from the adenoviral E1 region and IL-2 is expressed from the E3 region. Immunization of mice with this new vector construct resulted in an augmented primary effector CD8(+) T-cell response. Furthermore, in a melanoma model we observed significantly prolonged tumor control in vaccinated wild type (WT) mice. The improved tumor control required antigen-specific cells, since no tumor control was observed, unless the melanoma cells expressed the vaccine targeted antigen. We also tested our new vaccine in immunodeficient (CD80/86 deficient) mice. Following vaccination with the IL-2 expressing construct, these mice were able to raise a delayed but substantial CD8(+) T-cell response, and to control melanoma growth nearly as efficaciously as similarly vaccinated WT mice. Taken together, these results demonstrate that current vaccine vectors can be improved and even tailored to meet specific demands: in the context of therapeutic vaccination, the capacity to promote an augmented effector T-cell response.


Antigens, Viral, Tumor/genetics , CD8-Positive T-Lymphocytes/metabolism , Genetic Vectors/administration & dosage , Interleukin-2/genetics , Melanoma, Experimental/therapy , Skin Neoplasms/therapy , Animals , Antigens, Viral, Tumor/immunology , Cancer Vaccines/administration & dosage , Cell Line, Tumor , Female , Interleukin-2/immunology , Melanoma, Experimental/immunology , Mice , Mice, Inbred C57BL , Skin Neoplasms/immunology , Spleen/immunology , Vaccinia virus/genetics , Vaccinia virus/immunology
...