Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Genes Dev ; 33(21-22): 1555-1574, 2019 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-31558568

RESUMEN

The termination of pre-mRNA splicing functions to discard suboptimal substrates, thereby enhancing fidelity, and to release excised introns in a manner coupled to spliceosome disassembly, thereby allowing recycling. The mechanism of termination, including the RNA target of the DEAH-box ATPase Prp43p, remains ambiguous. We discovered a critical role for nucleotides at the 3' end of the catalytic U6 small nuclear RNA in splicing termination. Although conserved sequence at the 3' end is not required, 2' hydroxyls are, paralleling requirements for Prp43p biochemical activities. Although the 3' end of U6 is not required for recruiting Prp43p to the spliceosome, the 3' end cross-links directly to Prp43p in an RNA-dependent manner. Our data indicate a mechanism of splicing termination in which Prp43p translocates along U6 from the 3' end to disassemble the spliceosome and thereby release suboptimal substrates or excised introns. This mechanism reveals that the spliceosome becomes primed for termination at the same stage it becomes activated for catalysis, implying a requirement for stringent control of spliceosome activity within the cell.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , ARN Helicasas DEAD-box/metabolismo , Empalme del ARN/fisiología , ARN Nuclear Pequeño/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Empalmosomas/metabolismo , Intrones/genética , Unión Proteica , Empalme del ARN/genética
2.
RNA ; 23(7): 1110-1124, 2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-28416566

RESUMEN

Three families of nucleic acid-dependent ATPases (DEAH/RHA, Ski2-like, and NS3/NPH-II), termed the DExH ATPases, are thought to execute myriad functions by processive, ATP-dependent, 3' to 5' translocation along single-stranded nucleic acid. While the mechanism of translocation of the viral NS3/NPH-II family has been studied extensively, it has not been clear if or how the principles that have emerged for this family extend to the other two families. Here we report the crystal structure of the yeast DEAH/RHA family ATPase Prp43p, which functions in splicing and ribosome biogenesis, in complex with poly-uracil and a nonhydrolyzable ATP analog. The structure reveals a conserved DEAH/RHA-specific variation of motif Ib within the RecA1 domain of the catalytic core, in which the motif elongates as a ß-hairpin that bookends the 3' end of a central RNA stack, a function that in the viral and Ski-2 families is performed by an auxiliary domain. Supporting a fundamental role in translocation, mutations in this hairpin abolished helicase activity without affecting RNA binding or ATPase activity. While the structure reveals differences with viral ATPases in the RecA1 domain, our structure demonstrates striking similarities with viral ATPases in the RecA2 domain of the catalytic core, including both a prominent ß-hairpin that bookends the 5' end of the RNA stack and a dynamic motif Va that is implicated in mediating translocation. Our crystal structure, genetic, and biochemical experiments, as well as comparisons with other DExH ATPases, support a generalized mechanism for the DExH class of helicases involving a pair of bookends that inchworm along RNA.


Asunto(s)
ARN Helicasas DEAD-box/química , ARN Helicasas DEAD-box/metabolismo , ARN de Hongos/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Adenosina Difosfato/análogos & derivados , Sitios de Unión , Dominio Catalítico , Cristalografía por Rayos X , ARN Helicasas DEAD-box/genética , Modelos Moleculares , Mutación , Unión Proteica , Dominios Proteicos , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética
3.
Methods Enzymol ; 536: 133-47, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24423273

RESUMEN

Yeast is an excellent system for the expression of recombinant eukaryotic proteins. Both endogenous and heterologous proteins can be overexpressed in yeast (Phan et al., 2001; Ton and Rao, 2004). Because yeast is easy to manipulate genetically, a strain can be optimized for the expression of a specific protein. Many eukaryotic proteins contain posttranslational modifications that can be performed in yeast but not in bacterial expression systems. In comparison with mammalian cell culture expression systems, growing yeast is both faster and less expensive, and large-scale cultures can be performed using fermentation. While several different yeast expression systems exist, this chapter focuses on the budding yeast Saccharomyces cerevisiae and will briefly describe some options to consider when selecting vectors and tags to be used for protein expression. Throughout this chapter, the expression and purification of yeast eIF3 is shown as an example alongside a general scheme outline.


Asunto(s)
Saccharomyces cerevisiae/metabolismo , Tampones (Química) , Fraccionamiento Celular , Factor 3 de Iniciación Eucariótica/biosíntesis , Factor 3 de Iniciación Eucariótica/genética , Factor 3 de Iniciación Eucariótica/aislamiento & purificación , Expresión Génica , Regiones Promotoras Genéticas , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/genética , Proteínas Recombinantes/aislamiento & purificación , Saccharomyces cerevisiae/crecimiento & desarrollo , Proteínas de Saccharomyces cerevisiae/biosíntesis , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/aislamiento & purificación
4.
Genes Dev ; 26(22): 2461-7, 2012 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-23154979

RESUMEN

During pre-mRNA splicing, the spliceosome is activated for catalysis by unwinding base-paired U4/U6 small nuclear RNAs, a step that must be precisely timed. We know that unwinding requires the ATPase Brr2, but the mechanism and regulation of unwinding have been understood poorly. In the November 1, 2012, issue of Genes & Development, Hahn and colleagues (pp. 2408-2421) and Mozaffari-Jovin and colleagues (pp. 2422-2434) defined a pathway for U4/U6 unwinding. Moreover, Mozaffari-Jovin and colleagues suggested a mechanism for regulating Brr2.

5.
Methods Enzymol ; 511: 191-212, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22713321

RESUMEN

Small-angle X-ray scattering (SAXS) is a structural characterization method applicable to biological macromolecules in solution. The great advantage of solution scattering is that the systems can be investigated in near-physiological conditions and their response to external changes can also be easily investigated. In this chapter, we discuss the application of SAXS for studying the conformation of helicases alone and in complex with other biological macromolecules. The DEAD-box helicase eIF4A and the DEAH/RHA helicase Prp43 are investigated for their solution structures, and the analysis of the collected scattering data is presented. A wide range of methods for analysis of SAXS data are presented and discussed. Ab initio methods can be used to yield low-resolution solution structures, and when models with atomic resolution are available, these can be included to aid the determination of solution structures. Using such prior information relating to the systems studied and applying a variety of methods, substantial insight can be gained about solution structures and interactions of biological macromolecules through small-angle scattering.


Asunto(s)
ARN Helicasas/química , Dispersión del Ángulo Pequeño , Animales , Humanos , ARN Helicasas/metabolismo , Rayos X
6.
Biomol Concepts ; 2(4): 315-26, 2011 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-25962039

RESUMEN

Helicases are ubiquitous enzymes that participate in every aspect of nucleic acid metabolism. The DEAH/RHA family of helicases are involved in a variety of cellular processes including transcriptional and translational regulation, pre-mRNA splicing, pre-rRNA processing, mRNA export and decay, in addition to the innate immune response. Recently, the first crystal structures of a DEAH/RHA helicase unveiled the unique structural features of this helicase family. These structures furthermore illuminate the molecular mechanism of these proteins and provide a framework for analysis of their interaction with nucleic acids, regulatory proteins and large macromolecular complexes.

7.
Nucleic Acids Res ; 39(7): 2678-89, 2011 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-21113024

RESUMEN

eIF4A is a key component in eukaryotic translation initiation; however, it has not been clear how auxiliary factors like eIF4B and eIF4G stimulate eIF4A and how this contributes to the initiation process. Based on results from isothermal titration calorimetry, we propose a two-site model for eIF4A binding to an 83.5 kDa eIF4G fragment (eIF4G-MC), with a high- and a low-affinity site, having binding constants KD of ∼50 and ∼1000 nM, respectively. Small angle X-ray scattering analysis shows that the eIF4G-MC fragment adopts an elongated, well-defined structure with a maximum dimension of 220 Å, able to span the width of the 40S ribosomal subunit. We establish a stable eIF4A-eIF4B complex requiring RNA, nucleotide and the eIF4G-MC fragment, using an in vitro RNA pull-down assay. The eIF4G-MC fragment does not stably associate with the eIF4A-eIF4B-RNA-nucleotide complex but acts catalytically in its formation. Furthermore, we demonstrate that eIF4B and eIF4G-MC act synergistically in stimulating the ATPase activity of eIF4A.


Asunto(s)
Factor 4A Eucariótico de Iniciación/metabolismo , Factor 4G Eucariótico de Iniciación/metabolismo , Factores Eucarióticos de Iniciación/metabolismo , Adenosina Trifosfatasas/metabolismo , Factor 4A Eucariótico de Iniciación/química , Factor 4G Eucariótico de Iniciación/química , Unión Proteica , Dispersión del Ángulo Pequeño , Difracción de Rayos X
8.
Proc Natl Acad Sci U S A ; 107(24): 10854-9, 2010 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-20534490

RESUMEN

After each round of protein biosynthesis, the posttermination complex (PoTC) consisting of a ribosome, mRNA, and tRNA must be disassembled into its components for a new round of translation. Here, we show that a Saccharomyces cerevisiae model PoTC was disassembled by ATP and eukaryotic elongation factor 3 (eEF3). GTP or ITP functioned with less efficiency and adenosine 5gamma'-(beta,gamma-imido)triphosphate did not function at all. The k(cat) of eEF3 was 1.12 min(-1), which is comparable to that of the in vitro initiation step. The disassembly reaction was inhibited by aminoglycosides and cycloheximide. The subunits formed from the yeast model PoTC remained separated under ionic conditions close to those existing in vivo, suggesting that they are ready to enter the initiation process. Based on our experimental techniques used in this paper, the release of mRNA and tRNA and ribosome dissociation took place simultaneously. No 40S*mRNA complex was observed, indicating that eEF3 action promotes ribosome recycling, not reinitiation.


Asunto(s)
Adenosina Trifosfato/metabolismo , Factores de Elongación de Péptidos/metabolismo , Ribosomas/metabolismo , Proteínas de Saccharomyces cerevisiae/biosíntesis , Saccharomyces cerevisiae/metabolismo , Citoplasma/metabolismo , Cinética , Modelos Biológicos , Modelos Moleculares , Factores de Elongación de Péptidos/química , ARN de Hongos/metabolismo , ARN Mensajero/metabolismo , ARN de Transferencia/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo
9.
EMBO Rep ; 11(3): 180-6, 2010 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-20168331

RESUMEN

DEAH helicases participate in pre-messenger RNA splicing and ribosome biogenesis. The structure of yeast Prp43p-ADP reveals the homology of DEAH helicases to DNA helicases and the presence of an oligonucleotide-binding motif. A beta-hairpin from the second RecA domain is wedged between two carboxy-terminal domains and blocks access to the occluded RNA binding site formed by the RecA domains and a C-terminal domain. ATP binding and hydrolysis are likely to induce conformational changes in the hairpin that are important for RNA unwinding or ribonucleoprotein remodelling. The structure of Prp43p provides the framework for functional and genetic analysis of all DEAH helicases.


Asunto(s)
Adenosina Trifosfato/química , Empalme Alternativo , ARN Helicasas DEAD-box/genética , ADN Helicasas/metabolismo , ARN Mensajero/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Sitios de Unión , Cristalografía por Rayos X/métodos , Modelos Moleculares , Conformación Molecular , Conformación de Ácido Nucleico , Unión Proteica , Estructura Terciaria de Proteína , ARN/química , Empalme del ARN , Saccharomyces cerevisiae/genética
10.
RNA ; 15(1): 67-75, 2009 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-19033377

RESUMEN

The exon junction complex (EJC) is deposited onto spliced mRNAs and is involved in many aspects of mRNA function. We have recently reconstituted and solved the crystal structure of the EJC core made of MAGOH, Y14, the most conserved portion of MLN51, and the DEAD-box ATPase eIF4AIII bound to RNA in the presence of an ATP analog. The heterodimer MAGOH/Y14 inhibits ATP turnover by eIF4AIII, thereby trapping the EJC core onto RNA, but the exact mechanism behind this remains unclear. Here, we present the crystal structure of the EJC core bound to ADP-AIF(3), the first structure of a DEAD-box helicase in the transition-mimicking state during ATP hydrolysis. It reveals a dissociative transition state geometry and suggests that the locking of the EJC onto the RNA by MAGOH/Y14 is not caused by preventing ATP hydrolysis. We further show that ATP can be hydrolyzed inside the EJC, demonstrating that MAGOH/Y14 acts by locking the conformation of the EJC, so that the release of inorganic phosphate, ADP, and RNA is prevented. Unifying features of ATP hydrolysis are revealed by comparison of our structure with the EJC-ADPNP structure and other helicases. The reconstitution of a transition state mimicking complex is not limited to the EJC and eIF4AIII as we were also able to reconstitute the complex Dbp5-RNA-ADP-AlF(3), suggesting that the use of ADP-AlF(3) may be a valuable tool for examining DEAD-box ATPases in general.


Asunto(s)
Adenosina Trifosfatasas/química , Adenosina Trifosfato/metabolismo , ARN Helicasas DEAD-box/química , Exones/fisiología , Adenosina Trifosfatasas/antagonistas & inhibidores , Adenosina Trifosfatasas/metabolismo , Sitios de Unión , Cristalografía por Rayos X , ARN Helicasas DEAD-box/metabolismo , Factor 4A Eucariótico de Iniciación/química , Factor 4A Eucariótico de Iniciación/metabolismo , Hidrólisis , Modelos Moleculares , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , Conformación Proteica , ARN Helicasas/metabolismo , Ribonucleoproteínas/metabolismo
11.
Genes Dev ; 22(17): 2414-25, 2008 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-18765792

RESUMEN

Yeast initiation factor eIF3 (eukaryotic initiation factor 3) has been implicated in multiple steps of translation initiation. Previously, we showed that the N-terminal domain (NTD) of eIF3a interacts with the small ribosomal protein RPS0A located near the mRNA exit channel, where eIF3 is proposed to reside. Here, we demonstrate that a partial deletion of the RPS0A-binding domain of eIF3a impairs translation initiation and reduces binding of eIF3 and associated eIFs to native preinitiation complexes in vivo. Strikingly, it also severely blocks the induction of GCN4 translation that occurs via reinitiation. Detailed examination unveiled a novel reinitiation defect resulting from an inability of 40S ribosomes to resume scanning after terminating at the first upstream ORF (uORF1). Genetic analysis reveals a functional interaction between the eIF3a-NTD and sequences 5' of uORF1 that is critically required to enhance reinitiation. We further demonstrate that these stimulatory sequences must be positioned precisely relative to the uORF1 stop codon and that reinitiation efficiency after uORF1 declines with its increasing length. Together, our results suggest that eIF3 is retained on ribosomes throughout uORF1 translation and, upon termination, interacts with its 5' enhancer at the mRNA exit channel to stabilize mRNA association with post-termination 40S subunits and enable resumption of scanning for reinitiation downstream.


Asunto(s)
Proteínas de Ciclo Celular/fisiología , Proteínas de Unión al ADN/biosíntesis , Factor 3 de Iniciación Eucariótica/fisiología , Sistemas de Lectura Abierta/fisiología , Subunidades Ribosómicas Pequeñas de Eucariotas/fisiología , Proteínas de Saccharomyces cerevisiae/biosíntesis , Proteínas de Saccharomyces cerevisiae/fisiología , Saccharomyces cerevisiae/fisiología , Factores de Transcripción/biosíntesis , Región de Flanqueo 5' , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico , Proteínas de Ciclo Celular/genética , Proteínas de Unión al ADN/genética , Elementos de Facilitación Genéticos , Factor 3 de Iniciación Eucariótica/genética , ARN Mensajero/biosíntesis , ARN Mensajero/genética , Proteínas Ribosómicas , Subunidades Ribosómicas Pequeñas de Eucariotas/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Factores de Transcripción/genética
12.
Methods Enzymol ; 429: 163-83, 2007.
Artículo en Inglés | MEDLINE | ID: mdl-17913623

RESUMEN

Translation initiation starts with the formation of the 43S preinitiation complex (PIC) consisting of several soluble factors, including the ternary complex (TC; elF2-GTP-Met-tRNA(i)(Met)), which associate with the small ribosomal subunit. In the next step, mRNA is recruited to form the 48S PIC and the entire machinery starts scanning the 5' untranslated region of the mRNA until the AUG start codon is encountered. The most widely used method to separate 40S and 60S ribosomal subunits from soluble factors, monosomes and polysomes, is sucrose density centrifugation (SDC). Since PICs are intrinsically unstable complexes that cannot withstand the forces imposed by SDC, a stabilization agent must be employed to detect the association of factors with the 40S subunit after SDC. This was initially achieved by adding heparin (a highly sulfated glycosaminoglycan) directly to the breaking buffer of cells treated with cycloheximide (a translation elongation inhibitor). However, the mechanism of stabilization is not understood and, moreover, there are indications that the use of heparin may lead to artifactual factor associations that do not reflect the factor occupancy of the 43S/48S PICs in the cell at the time of lysis. Therefore, we developed an alternative method for PIC stabilization using formaldehyde (HCHO) to cross-link factors associated with 40S ribosomal subunits in vivo before the disruption of the yeast cells. Results obtained using HCHO stabilization strongly indicate that the factors detected on the 43S/48S PIC after SDC approximate a real-time in vivo "snapshot" of the 43S/48S PIC composition. In this chapter, we will present the protocol for HCHO cross-linking in detail and demonstrate the difference between heparin and HCHO stabilization procedures. In addition, different conditions for displaying the polysome profile or PIC analysis by SDC, used to address different questions, will be outlined.


Asunto(s)
Reactivos de Enlaces Cruzados/química , Factores Eucarióticos de Iniciación/química , Formaldehído/química , Iniciación de la Cadena Peptídica Traduccional/fisiología , Northern Blotting , Western Blotting , Extractos Celulares , Fraccionamiento Celular/métodos , Heparina/química , Polirribosomas/fisiología
13.
Methods Enzymol ; 431: 15-32, 2007.
Artículo en Inglés | MEDLINE | ID: mdl-17923228

RESUMEN

Protein complexes play a critical role in virtually all cellular processes that have been studied to date. Comprehensive knowledge of the architecture of a protein complex of interest is, therefore, an important prerequisite for understanding its role in the context of a particular pathway in which it participates. One of the possible approaches that has proven very useful in characterizing a protein complex is outlined in this chapter using the example of the eukaryotic initiation factor 3 (eIF3) and some of its binding partners. eIF3 is one of the major players in the translation initiation pathway because it orchestrates several crucial steps that ultimately conclude with formation of the 80S ribosome where the anticodon of methionyl-tRNA(i)(Met) base-pairs with the AUG start codon of the mRNA in the ribosomal P-site. We previously demonstrated that, in the budding yeast Saccharomyces cerevisiae, eIF3 closely cooperates with several other eIFs to stimulate recruitment of methionyl-tRNA(i)(Met) and mRNA to the 40S ribosome and that it forms, together with eIFs 1, 2, and 5, an important intermediate in translation initiation called the multifactor complex (MFC). Here, we summarize the fundamental procedure that allowed in-depth characterization of the MFC composition and identification of protein-protein interactions among its constituents. Primarily, we describe in detail in vivo purification techniques that, in combination with systematic deletion analysis, produced a 3D subunit interaction model for the MFC. Site-directed clustered-10-alanine-mutagenesis (CAM) employed to investigate the physiological significance of individual interactions is also presented. The general character of the entire procedure makes it usable for first-order structural characterization of virtually any soluble protein complex in yeast.


Asunto(s)
Análisis Mutacional de ADN/métodos , Factores Eucarióticos de Iniciación/química , Factores Eucarióticos de Iniciación/genética , Eliminación de Gen , Complejos Multiproteicos/química , Complejos Multiproteicos/genética , Algoritmos , Secuencia de Aminoácidos , Extractos Celulares/análisis , Extractos Celulares/química , Cromatografía de Afinidad/métodos , Factor 3 de Iniciación Eucariótica/química , Factor 3 de Iniciación Eucariótica/genética , Histidina/química , Imagenología Tridimensional , Modelos Biológicos , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Níquel/metabolismo , Subunidades de Proteína/análisis , Subunidades de Proteína/genética , Saccharomyces cerevisiae/genética
14.
Science ; 313(5795): 1968-72, 2006 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-16931718

RESUMEN

In higher eukaryotes, a multiprotein exon junction complex is deposited on spliced messenger RNAs. The complex is organized around a stable core, which serves as a binding platform for numerous factors that influence messenger RNA function. Here, we present the crystal structure of a tetrameric exon junction core complex containing the DEAD-box adenosine triphosphatase (ATPase) eukaryotic initiation factor 4AIII (eIF4AIII) bound to an ATP analog, MAGOH, Y14, a fragment of MLN51, and a polyuracil mRNA mimic. eIF4AIII interacts with the phosphate-ribose backbone of six consecutive nucleotides and prevents part of the bound RNA from being double stranded. The MAGOH and Y14 subunits lock eIF4AIII in a prehydrolysis state, and activation of the ATPase probably requires only modest conformational changes in eIF4AIII motif I.


Asunto(s)
Factor 4A Eucariótico de Iniciación/química , Exones , Proteínas de Neoplasias/química , Proteínas Nucleares/química , Poli U/química , ARN Mensajero/química , Proteínas de Unión al ARN/química , Adenosina Trifosfato/análogos & derivados , Adenosina Trifosfato/metabolismo , Adenilil Imidodifosfato/metabolismo , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Animales , Cristalografía por Rayos X , ARN Helicasas DEAD-box , Dimerización , Proteínas de Drosophila/química , Proteínas de Drosophila/metabolismo , Factor 4A Eucariótico de Iniciación/metabolismo , Humanos , Enlace de Hidrógeno , Hidrólisis , Modelos Moleculares , Datos de Secuencia Molecular , Mutación , Proteínas de Neoplasias/metabolismo , Proteínas Nucleares/metabolismo , Conformación de Ácido Nucleico , Poli U/metabolismo , Conformación Proteica , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , ARN Helicasas/química , ARN Helicasas/metabolismo , ARN Mensajero/metabolismo , Proteínas de Unión al ARN/metabolismo
15.
Mol Cell Biol ; 26(8): 2984-98, 2006 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-16581774

RESUMEN

We found that mutating the RNP1 motif in the predicted RRM domain in yeast eukaryotic initiation factor 3 (eIF3) subunit b/PRT1 (prt1-rnp1) impairs its direct interactions in vitro with both eIF3a/TIF32 and eIF3j/HCR1. The rnp1 mutation in PRT1 confers temperature-sensitive translation initiation in vivo and reduces 40S-binding of eIF3 to native preinitiation complexes. Several findings indicate that the rnp1 lesion decreases recruitment of eIF3 to the 40S subunit by HCR1: (i) rnp1 strongly impairs the association of HCR1 with PRT1 without substantially disrupting the eIF3 complex; (ii) rnp1 impairs the 40S binding of eIF3 more so than the 40S binding of HCR1; (iii) overexpressing HCR1-R215I decreases the Ts(-) phenotype and increases 40S-bound eIF3 in rnp1 cells; (iv) the rnp1 Ts(-) phenotype is exacerbated by tif32-Delta6, which eliminates a binding determinant for HCR1 in TIF32; and (v) hcr1Delta impairs 40S binding of eIF3 in otherwise wild-type cells. Interestingly, rnp1 also reduces the levels of 40S-bound eIF5 and eIF1 and increases leaky scanning at the GCN4 uORF1. Thus, the PRT1 RNP1 motif coordinates the functions of HCR1 and TIF32 in 40S binding of eIF3 and is needed for optimal preinitiation complex assembly and AUG recognition in vivo.


Asunto(s)
Factor 3 de Iniciación Eucariótica/metabolismo , Factores de Iniciación de Péptidos/metabolismo , Ribosomas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Western Blotting , Secuencia Conservada , Escherichia coli/genética , Factor 3 de Iniciación Eucariótica/química , Factor 3 de Iniciación Eucariótica/genética , Modelos Moleculares , Datos de Secuencia Molecular , Mutación , Factores de Iniciación de Péptidos/química , Factores de Iniciación de Péptidos/genética , Estructura Terciaria de Proteína , Subunidades de Proteína , Saccharomyces cerevisiae/crecimiento & desarrollo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Temperatura
16.
Mol Cell Biol ; 26(4): 1355-72, 2006 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-16449648

RESUMEN

Recruitment of the eukaryotic translation initiation factor 2 (eIF2)-GTP-Met-tRNAiMet ternary complex to the 40S ribosome is stimulated by multiple initiation factors in vitro, including eIF3, eIF1, eIF5, and eIF1A. Recruitment of mRNA is thought to require the functions of eIF4F and eIF3, with the latter serving as an adaptor between the ribosome and the 4G subunit of eIF4F. To define the factor requirements for these reactions in vivo, we examined the effects of depleting eIF2, eIF3, eIF5, or eIF4G in Saccharomyces cerevisiae cells on binding of the ternary complex, other initiation factors, and RPL41A mRNA to native 43S and 48S preinitiation complexes. Depleting eIF2, eIF3, or eIF5 reduced 40S binding of all constituents of the multifactor complex (MFC), comprised of these three factors and eIF1, supporting a mechanism of coupled 40S binding by MFC components. 40S-bound mRNA strongly accumulated in eIF5-depleted cells, even though MFC binding to 40S subunits was reduced by eIF5 depletion. Hence, stimulation of the GTPase activity of the ternary complex, a prerequisite for 60S subunit joining in vitro, is likely the rate-limiting function of eIF5 in vivo. Depleting eIF2 or eIF3 impaired mRNA binding to free 40S subunits, but depleting eIF4G led unexpectedly to accumulation of mRNA on 40S subunits. Thus, it appears that eIF3 and eIF2 are more critically required than eIF4G for stable binding of at least some mRNAs to native preinitiation complexes and that eIF4G has a rate-limiting function at a step downstream of 48S complex assembly in vivo.


Asunto(s)
Factor 2 Eucariótico de Iniciación/metabolismo , Factor 3 de Iniciación Eucariótica/metabolismo , ARN Mensajero/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Factor 2 Eucariótico de Iniciación/genética , Factor 3 de Iniciación Eucariótica/genética , Factor 4G Eucariótico de Iniciación/genética , Factor 4G Eucariótico de Iniciación/metabolismo , Factores Eucarióticos de Iniciación/genética , Factores Eucarióticos de Iniciación/metabolismo , Eliminación de Gen , Genes Fúngicos , Mutación , Unión Proteica , Subunidades de Proteína , ARN de Hongos/genética , ARN de Hongos/metabolismo , ARN Mensajero/genética , Ribosomas/química , Ribosomas/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética
17.
Mol Cell Biol ; 24(21): 9437-55, 2004 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-15485912

RESUMEN

The N-terminal domain (NTD) of NIP1/eIF3c interacts directly with eIF1 and eIF5 and indirectly through eIF5 with the eIF2-GTP-Met-tRNA(i)(Met) ternary complex (TC) to form the multifactor complex (MFC). We investigated the physiological importance of these interactions by mutating 16 segments spanning the NIP1-NTD. Mutations in multiple segments reduced the binding of eIF1 or eIF5 to the NIP1-NTD. Mutating a C-terminal segment of the NIP1-NTD increased utilization of UUG start codons (Sui(-) phenotype) and was lethal in cells expressing eIF5-G31R that is hyperactive in stimulating GTP hydrolysis by the TC at AUG codons. Both effects of this NIP1 mutation were suppressed by eIF1 overexpression, as was the Sui(-) phenotype conferred by eIF5-G31R. Mutations in two N-terminal segments of the NIP1-NTD suppressed the Sui(-) phenotypes produced by the eIF1-D83G and eIF5-G31R mutations. From these and other findings, we propose that the NIP1-NTD coordinates an interaction between eIF1 and eIF5 that inhibits GTP hydrolysis at non-AUG codons. Two NIP1-NTD mutations were found to derepress GCN4 translation in a manner suppressed by overexpressing the TC, indicating that MFC formation stimulates TC recruitment to 40S ribosomes. Thus, the NIP1-NTD is required for efficient assembly of preinitiation complexes and also regulates the selection of AUG start codons in vivo.


Asunto(s)
Codón Iniciador/genética , Factor 1 Eucariótico de Iniciación/metabolismo , Factor 5 Eucariótico de Iniciación/metabolismo , Proteínas Nucleares/metabolismo , Factor 3 Procariótico de Iniciación/química , Factor 3 Procariótico de Iniciación/metabolismo , Biosíntesis de Proteínas , Proteínas de Saccharomyces cerevisiae/metabolismo , Alanina/genética , Alanina/metabolismo , Secuencia de Aminoácidos , Proteínas de Unión al ADN/biosíntesis , Proteínas de Unión al ADN/genética , Factor 3 de Iniciación Eucariótica , Regulación Fúngica de la Expresión Génica , Guanosina Trifosfato/metabolismo , Modelos Moleculares , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Proteínas Nucleares/genética , Fenotipo , Factor 3 Procariótico de Iniciación/genética , Unión Proteica , Biosíntesis de Proteínas/genética , Proteínas Quinasas/biosíntesis , Proteínas Quinasas/genética , Estructura Cuaternaria de Proteína , Subunidades de Proteína/metabolismo , ARN de Transferencia de Metionina/metabolismo , Ribosomas/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/biosíntesis , Proteínas de Saccharomyces cerevisiae/genética
18.
EMBO J ; 23(5): 1166-77, 2004 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-14976554

RESUMEN

The binding of eIF2-GTP-tRNA(i)(Met) ternary complex (TC) to 40S subunits is impaired in yeast prt1-1 (eIF3b) mutant extracts, but evidence is lacking that TC recruitment is a critical function of eIF3 in vivo. If TC binding was rate-limiting in prt1-1 cells, overexpressing TC should suppress the temperature-sensitive phenotype and GCN4 translation should be strongly derepressed in this mutant, but neither was observed. Rather, GCN4 translation is noninducible in prt1-1 cells, and genetic analysis indicates defective ribosomal scanning between the upstream open reading frames that mediate translational control. prt1-1 cells also show reduced utilization of a near-cognate start codon, implicating eIF3 in AUG selection. Using in vivo cross-linking, we observed accumulation of TC and mRNA/eIF4G on 40S subunits and a 48S 'halfmer' in prt1-1 cells. Genetic evidence suggests that 40S-60S subunit joining is not rate-limiting in the prt1-1 mutant. Thus, eIF3b functions between 48S assembly and subunit joining to influence AUG recognition and reinitiation on GCN4 mRNA. Other mutations that disrupt eIF2-eIF3 contacts in the multifactor complex (MFC) diminished 40S-bound TC, indicating that MFC formation enhances 43S assembly in vivo.


Asunto(s)
Codón Iniciador/genética , Proteínas de Unión al ADN/metabolismo , Factor 3 de Iniciación Eucariótica/metabolismo , Regulación Fúngica de la Expresión Génica , Biosíntesis de Proteínas , Proteínas Quinasas/metabolismo , Ribosomas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Unión al ADN/genética , Factor 2 Eucariótico de Iniciación/metabolismo , Genotipo , Guanosina Trifosfato/metabolismo , Cinética , Mutación/genética , Proteínas Quinasas/genética , Transporte de Proteínas , ARN Mensajero/genética , ARN Mensajero/metabolismo , ARN de Transferencia de Metionina/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Temperatura
19.
Ann N Y Acad Sci ; 1038: 60-74, 2004 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-15838098

RESUMEN

Eukaryotic cells respond to starvation by decreasing the rate of general protein synthesis while inducing translation of specific mRNAs encoding transcription factors GCN4 (yeast) or ATF4 (humans). Both responses are elicited by phosphorylation of translation initiation factor 2 (eIF2) and the attendant inhibition of its nucleotide exchange factor eIF2B-decreasing the binding to 40S ribosomes of methionyl initiator tRNA in the ternary complex (TC) with eIF2 and GTP. The reduction in TC levels enables scanning ribosomes to bypass the start codons of upstream open reading frames in the GCN4 mRNA leader and initiate translation at the authentic GCN4 start codon. We exploited the fact that GCN4 translation is a sensitive reporter of defects in TC recruitment to identify the catalytic and regulatory subunits of eIF2B. More recently, we implicated the C-terminal domain of eIF1A in 40S-binding of TC in vivo. Interestingly, we found that TC resides in a multifactor complex (MFC) with eIF3, eIF1, and the GTPase-activating protein for eIF2, known as eIF5. Our biochemical and genetic analyses indicate that physical interactions between MFC components enhance TC binding to 40S subunits and are required for wild-type translational control of GCN4. MFC integrity and eIF3 function also contribute to post-assembly steps in the initiation pathway that impact GCN4 expression. Thus, apart from its critical role in the starvation response, GCN4 regulation is a valuable tool for dissecting the contributions of multiple translation factors in the eukaryotic initiation pathway.


Asunto(s)
Regulación Fúngica de la Expresión Génica , Biosíntesis de Proteínas , Saccharomyces cerevisiae , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Factor 1 Eucariótico de Iniciación/genética , Factor 1 Eucariótico de Iniciación/metabolismo , Factor 2 Eucariótico de Iniciación/metabolismo , Factor 2B Eucariótico de Iniciación/genética , Factor 2B Eucariótico de Iniciación/metabolismo , Humanos , Sustancias Macromoleculares , Modelos Moleculares , Unión Proteica , Proteínas Quinasas/genética , Proteínas Quinasas/metabolismo , Estructura Terciaria de Proteína , Ribosomas/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
20.
Genes Dev ; 17(6): 786-99, 2003 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-12651896

RESUMEN

Initiation factor 3 (eIF3) forms a multifactor complex (MFC) with eIF1, eIF2, and eIF5 that stimulates Met-tRNA(i)(Met) binding to 40S ribosomes and promotes scanning or AUG recognition. We have previously characterized MFC subcomplexes produced in vivo from affinity-tagged eIF3 subunits lacking discrete binding domains for other MFC components. Here we asked whether these subcomplexes can bind to 40S ribosomes in vivo. We found that the N- and C-terminal domains of NIP1/eIF3c, the N- and C-terminal domains of TIF32/eIF3a, and eIF5 have critical functions in 40S binding, with eIF5 and the TIF32-CTD performing redundant functions. The TIF32-CTD interacted in vitro with helices 16-18 of domain I in 18S rRNA, and the TIF32-NTD and NIP1 interacted with 40S protein RPS0A. These results suggest that eIF3 binds to the solvent side of the 40S subunit in a way that provides access to the interface side for the two eIF3 segments (NIP1-NTD and TIF32-CTD) that interact with eIF1, eIF5, and the eIF2/GTP/Met-tRNA(i)(Met) ternary complex.


Asunto(s)
Proteínas de Ciclo Celular/química , Factor 5 Eucariótico de Iniciación/química , Proteínas Fúngicas/química , Proteínas Nucleares/química , Proteínas de Saccharomyces cerevisiae/química , Northern Blotting , Western Blotting , Proteínas de Ciclo Celular/metabolismo , Factor 3 de Iniciación Eucariótica , Factor 5 Eucariótico de Iniciación/metabolismo , Proteínas Fúngicas/metabolismo , Modelos Moleculares , Proteínas Nucleares/metabolismo , Unión Proteica , Biosíntesis de Proteínas , Estructura Terciaria de Proteína , ARN Ribosómico 18S/metabolismo , Ribosomas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...