Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Chembiochem ; 25(1): e202300409, 2024 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-37948327

RESUMEN

Cofactor regeneration systems are of major importance for the applicability of oxidoreductases in biocatalysis. Previously, geranylgeranyl reductases have been investigated for the enzymatic reduction of isolated C=C bonds. However, an enzymatic cofactor-regeneration system for in vitro use is lacking. In this work, we report a ferredoxin from the archaea Archaeoglobus fulgidus that regenerates the flavin of the corresponding geranylgeranyl reductase. The proteins were heterologously produced, and the regeneration was coupled to a ferredoxin reductase from Escherichia coli and a glucose dehydrogenase from Bacillus subtilis, thereby enabling the reduction of isolated C=C bonds by purified enzymes. The system was applied in crude, cell-free extracts and gave conversions comparable to those of a previous method using sodium dithionite for cofactor regeneration. Hence, an enzymatic approach to the reduction of isolated C=C bonds can be coupled with common systems for the regeneration of nicotinamide cofactors, thereby opening new perspectives for the application of geranylgeranyl reductases in biocatalysis.


Asunto(s)
Coenzimas , Ferredoxinas , Coenzimas/metabolismo , Ferredoxinas/metabolismo , Oxidorreductasas/metabolismo , Escherichia coli/metabolismo , Oxidación-Reducción
2.
Angew Chem Int Ed Engl ; 63(13): e202314740, 2024 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-37924279

RESUMEN

The asymmetric reduction of double bonds using NAD(P)H-dependent oxidoreductases has proven to be an efficient tool for the synthesis of important chiral molecules in research and on industrial scale. These enzymes are commercially available in screening kits for the reduction of C=O (ketones), C=C (activated alkenes), or C=N bonds (imines). Recent reports, however, indicate that the ability to accommodate multiple reductase activities on distinct C=X bonds occurs in different enzyme classes, either natively or after mutagenesis. This challenges the common perception of highly selective oxidoreductases for one type of electrophilic substrate. Consideration of this underexplored potential in enzyme screenings and protein engineering campaigns may contribute to the identification of complementary biocatalytic processes for the synthesis of chiral compounds. This review will contribute to a global understanding of the promiscuous behavior of NAD(P)H-dependent oxidoreductases on C=X bond reduction and inspire future discoveries with respect to unconventional biocatalytic routes in asymmetric synthesis.


Asunto(s)
NAD , Oxidorreductasas , NAD/química , Oxidación-Reducción , Oxidorreductasas/metabolismo , Catálisis , Biocatálisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...