Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 96
Filtrar
1.
Genome Med ; 16(1): 107, 2024 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-39187844

RESUMEN

BACKGROUND: Poly (ADP-ribose) polymerase 1 and 2 (PARP1/2) inhibitors (PARPi) are targeted therapies approved for homologous recombination repair (HRR)-deficient breast, ovarian, pancreatic, and prostate cancers. Since inhibition of PARP1 is sufficient to cause synthetic lethality in tumors with homologous recombination deficiency (HRD), PARP1 selective inhibitors such as saruparib (AZD5305) are being developed. It is expected that selective PARP1 inhibition leads to a safer profile that facilitates its combination with other DNA damage repair inhibitors. Here, we aimed to characterize the antitumor activity of AZD5305 in patient-derived preclinical models compared to the first-generation PARP1/2 inhibitor olaparib and to identify mechanisms of resistance. METHODS: Thirteen previously characterized patient-derived tumor xenograft (PDX) models from breast, ovarian, and pancreatic cancer patients harboring germline pathogenic alterations in BRCA1, BRCA2, or PALB2 were used to evaluate the efficacy of AZD5305 alone or in combination with carboplatin or an ataxia telangiectasia and Rad3 related (ATR) inhibitor (ceralasertib) and compared it to the first-generation PARPi olaparib. We performed DNA and RNA sequencing as well as protein-based assays to identify mechanisms of acquired resistance to either PARPi. RESULTS: AZD5305 showed superior antitumor activity than the first-generation PARPi in terms of preclinical complete response rate (75% vs. 37%). The median preclinical progression-free survival was significantly longer in the AZD5305-treated group compared to the olaparib-treated group (> 386 days vs. 90 days). Mechanistically, AZD5305 induced more replication stress and genomic instability than the PARP1/2 inhibitor olaparib in PARPi-sensitive tumors. All tumors at progression with either PARPi (39/39) showed increase of HRR functionality by RAD51 foci formation. The most prevalent resistance mechanisms identified were the acquisition of reversion mutations in BRCA1/BRCA2 and the accumulation of hypomorphic BRCA1. AZD5305 did not sensitize PDXs with acquired resistance to olaparib but elicited profound and durable responses when combined with carboplatin or ceralasertib in 3/6 and 5/5 models, respectively. CONCLUSIONS: Collectively, these results show that the novel PARP1 selective inhibitor AZD5305 yields a potent antitumor response in PDX models with HRD and delays PARPi resistance alone or in combination with carboplatin or ceralasertib, which supports its use in the clinic as a new therapeutic option.


Asunto(s)
Proteína BRCA1 , Proteína BRCA2 , Inhibidores de Poli(ADP-Ribosa) Polimerasas , Ensayos Antitumor por Modelo de Xenoinjerto , Humanos , Animales , Inhibidores de Poli(ADP-Ribosa) Polimerasas/uso terapéutico , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Ratones , Proteína BRCA1/genética , Proteína BRCA2/genética , Femenino , Ftalazinas/farmacología , Ftalazinas/uso terapéutico , Poli(ADP-Ribosa) Polimerasa-1/antagonistas & inhibidores , Piperazinas/farmacología , Piperazinas/uso terapéutico , Indoles/uso terapéutico , Indoles/farmacología , Antineoplásicos/uso terapéutico , Antineoplásicos/farmacología , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/genética , Carboplatino/farmacología , Carboplatino/uso terapéutico , Línea Celular Tumoral , Resistencia a Antineoplásicos/efectos de los fármacos , Resistencia a Antineoplásicos/genética
2.
Cell Stem Cell ; 31(7): 1020-1037.e9, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38754428

RESUMEN

Autophagy is central to the benefits of longevity signaling programs and to hematopoietic stem cell (HSC) response to nutrient stress. With age, a subset of HSCs increases autophagy flux and preserves regenerative capacity, but the signals triggering autophagy and maintaining the functionality of autophagy-activated old HSCs (oHSCs) remain unknown. Here, we demonstrate that autophagy is an adaptive cytoprotective response to chronic inflammation in the aging murine bone marrow (BM) niche. We find that inflammation impairs glucose uptake and suppresses glycolysis in oHSCs through Socs3-mediated inhibition of AKT/FoxO-dependent signaling, with inflammation-mediated autophagy engagement preserving functional quiescence by enabling metabolic adaptation to glycolytic impairment. Moreover, we show that transient autophagy induction via a short-term fasting/refeeding paradigm normalizes glycolytic flux and significantly boosts oHSC regenerative potential. Our results identify inflammation-driven glucose hypometabolism as a key driver of HSC dysfunction with age and establish autophagy as a targetable node to reset oHSC regenerative capacity.


Asunto(s)
Autofagia , Glucólisis , Células Madre Hematopoyéticas , Inflamación , Animales , Células Madre Hematopoyéticas/metabolismo , Inflamación/patología , Inflamación/metabolismo , Ratones , Ratones Endogámicos C57BL , Envejecimiento/patología , Envejecimiento/metabolismo , Senescencia Celular , Transducción de Señal , Proteína 3 Supresora de la Señalización de Citocinas/metabolismo , Glucosa/metabolismo
3.
Nat Commun ; 15(1): 1604, 2024 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-38383534

RESUMEN

Hematopoietic stem cells (HSCs) develop from the hemogenic endothelium (HE) in the aorta- gonads-and mesonephros (AGM) region and reside within Intra-aortic hematopoietic clusters (IAHC) along with hematopoietic progenitors (HPC). The signalling mechanisms that distinguish HSCs from HPCs are unknown. Notch signaling is essential for arterial specification, IAHC formation and HSC activity, but current studies on how Notch segregates these different fates are inconsistent. We now demonstrate that Notch activity is highest in a subset of, GFI1 + , HSC-primed HE cells, and is gradually lost with HSC maturation. We uncover that the HSC phenotype is maintained due to increasing levels of NOTCH1 and JAG1 interactions on the surface of the same cell (cis) that renders the NOTCH1 receptor from being activated. Forced activation of the NOTCH1 receptor in IAHC activates a hematopoietic differentiation program. Our results indicate that NOTCH1-JAG1 cis-inhibition preserves the HSC phenotype in the hematopoietic clusters of the embryonic aorta.


Asunto(s)
Células Madre Hematopoyéticas , Receptor Notch1 , Receptor Notch1/genética , Receptor Notch1/metabolismo , Células Madre Hematopoyéticas/metabolismo , Diferenciación Celular/genética , Aorta/metabolismo , Arterias/metabolismo , Mesonefro , Gónadas/metabolismo
4.
Nat Commun ; 15(1): 1700, 2024 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-38402224

RESUMEN

The Ataxia telangiectasia and Rad3-related (ATR) inhibitor ceralasertib in combination with the PD-L1 antibody durvalumab demonstrated encouraging clinical benefit in melanoma and lung cancer patients who progressed on immunotherapy. Here we show that modelling of intermittent ceralasertib treatment in mouse tumor models reveals CD8+ T-cell dependent antitumor activity, which is separate from the effects on tumor cells. Ceralasertib suppresses proliferating CD8+ T-cells on treatment which is rapidly reversed off-treatment. Ceralasertib causes up-regulation of type I interferon (IFNI) pathway in cancer patients and in tumor-bearing mice. IFNI is experimentally found to be a major mediator of antitumor activity of ceralasertib in combination with PD-L1 antibody. Improvement of T-cell function after ceralasertib treatment is linked to changes in myeloid cells in the tumor microenvironment. IFNI also promotes anti-proliferative effects of ceralasertib on tumor cells. Here, we report that broad immunomodulatory changes following intermittent ATR inhibition underpins the clinical therapeutic benefit and indicates its wider impact on antitumor immunity.


Asunto(s)
Linfocitos T CD8-positivos , Indoles , Morfolinas , Neoplasias , Pirimidinas , Sulfonamidas , Humanos , Animales , Ratones , Antígeno B7-H1 , Microambiente Tumoral , Línea Celular Tumoral , Inmunoterapia , Modelos Animales de Enfermedad , Proteínas de la Ataxia Telangiectasia Mutada
5.
Development ; 151(3)2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-37982461

RESUMEN

Early organogenesis represents a key step in animal development, during which pluripotent cells diversify to initiate organ formation. Here, we sampled 300,000 single-cell transcriptomes from mouse embryos between E8.5 and E9.5 in 6-h intervals and combined this new dataset with our previous atlas (E6.5-E8.5) to produce a densely sampled timecourse of >400,000 cells from early gastrulation to organogenesis. Computational lineage reconstruction identified complex waves of blood and endothelial development, including a new programme for somite-derived endothelium. We also dissected the E7.5 primitive streak into four adjacent regions, performed scRNA-seq and predicted cell fates computationally. Finally, we defined developmental state/fate relationships by combining orthotopic grafting, microscopic analysis and scRNA-seq to transcriptionally determine cell fates of grafted primitive streak regions after 24 h of in vitro embryo culture. Experimentally determined fate outcomes were in good agreement with computationally predicted fates, demonstrating how classical grafting experiments can be revisited to establish high-resolution cell state/fate relationships. Such interdisciplinary approaches will benefit future studies in developmental biology and guide the in vitro production of cells for organ regeneration and repair.


Asunto(s)
Gastrulación , Organogénesis , Ratones , Animales , Diferenciación Celular , Organogénesis/genética , Línea Primitiva , Endotelio , Embrión de Mamíferos , Mamíferos
6.
Eur J Immunol ; 54(1): e2350633, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37799110

RESUMEN

In COVID-19, hyperinflammatory and dysregulated immune responses contribute to severity. Patients with pre-existing autoimmune conditions can therefore be at increased risk of severe COVID-19 and/or associated sequelae, yet SARS-CoV-2 infection in this group has been little studied. Here, we performed single-cell analysis of peripheral blood mononuclear cells from patients with three major autoimmune diseases (rheumatoid arthritis, psoriasis, or multiple sclerosis) during SARS-CoV-2 infection. We observed compositional differences between the autoimmune disease groups coupled with altered patterns of gene expression, transcription factor activity, and cell-cell communication that substantially shape the immune response under SARS-CoV-2 infection. While enrichment of HLA-DRlow CD14+ monocytes was observed in all three autoimmune disease groups, type-I interferon signaling as well as inflammatory T cell and monocyte responses varied widely between the three groups of patients. Our results reveal disturbed immune responses to SARS-CoV-2 in patients with pre-existing autoimmunity, highlighting important considerations for disease treatment and follow-up.


Asunto(s)
Enfermedades Autoinmunes , COVID-19 , Humanos , SARS-CoV-2 , Leucocitos Mononucleares , Multiómica , Autoinmunidad , Análisis de la Célula Individual
7.
Ultramicroscopy ; 254: 113845, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37688941

RESUMEN

Available quantification methods for energy dispersive X-ray microanalysis in transmission electron microscopy, such as the standardless method (SLM), the Cliff-Lorimer approximation (CLA) and the absorption correction method (ACM), are compared. As expected, the CLA and ACM give superior results with respect to the SLM. As far as absorption can be considered negligible, CLA and ACM perform similarly. However, starting from mass-thickness of the order of 22 × 10-6 g/cm2, absorption become significant and the ACM gives better results. More accurate analyses can be obtained with the ACM if distinct kO/Si factors are determined for light and heavy minerals, respectively, placing a divide at 2.90 g/cm3. Caution must be used when k-factors are derived indirectly from minerals with very different structure/chemistry, suggesting that separate k-factors data sets are required for accurate EDS quantification, at least for the major and diverse broad classes of minerals. Element diffusion of monovalent cations and channelling effects may represent a complication, especially in very anisotropic minerals such as phyllosilicates, where these two phenomena may occur together.

8.
bioRxiv ; 2023 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-37645930

RESUMEN

Aging of the hematopoietic system promotes various blood, immune and systemic disorders and is largely driven by hematopoietic stem cell (HSC) dysfunction ( 1 ). Autophagy is central for the benefits associated with activation of longevity signaling programs ( 2 ), and for HSC function and response to nutrient stress ( 3,4 ). With age, a subset of HSCs increases autophagy flux and preserves some regenerative capacity, while the rest fail to engage autophagy and become metabolically overactivated and dysfunctional ( 4 ). However, the signals that promote autophagy in old HSCs and the mechanisms responsible for the increased regenerative potential of autophagy-activated old HSCs remain unknown. Here, we demonstrate that autophagy activation is an adaptive survival response to chronic inflammation in the aging bone marrow (BM) niche ( 5 ). We find that inflammation impairs glucose metabolism and suppresses glycolysis in aged HSCs through Socs3-mediated impairment of AKT/FoxO-dependent signaling. In this context, we show that inflammation-mediated autophagy engagement preserves functional quiescence by enabling metabolic adaptation to glycolytic impairment. Moreover, we demonstrate that transient autophagy induction via a short-term fasting/refeeding paradigm normalizes glucose uptake and glycolytic flux and significantly improves old HSC regenerative potential. Our results identify inflammation-driven glucose hypometabolism as a key driver of HSC dysfunction with age and establish autophagy as a targetable node to reset old HSC glycolytic and regenerative capacity. One-Sentence Summary: Autophagy compensates for chronic inflammation-induced metabolic deregulation in old HSCs, and its transient modulation can reset old HSC glycolytic and regenerative capacity.

9.
Nat Genet ; 55(6): 1066-1075, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37308670

RESUMEN

Common genetic variants across individuals modulate the cellular response to pathogens and are implicated in diverse immune pathologies, yet how they dynamically alter the response upon infection is not well understood. Here, we triggered antiviral responses in human fibroblasts from 68 healthy donors, and profiled tens of thousands of cells using single-cell RNA-sequencing. We developed GASPACHO (GAuSsian Processes for Association mapping leveraging Cell HeterOgeneity), a statistical approach designed to identify nonlinear dynamic genetic effects across transcriptional trajectories of cells. This approach identified 1,275 expression quantitative trait loci (local false discovery rate 10%) that manifested during the responses, many of which were colocalized with susceptibility loci identified by genome-wide association studies of infectious and autoimmune diseases, including the OAS1 splicing quantitative trait locus in a COVID-19 susceptibility locus. In summary, our analytical approach provides a unique framework for delineation of the genetic variants that shape a wide spectrum of transcriptional responses at single-cell resolution.


Asunto(s)
Enfermedades Autoinmunes , COVID-19 , Tetranitrato de Pentaeritritol , Humanos , Estudio de Asociación del Genoma Completo , Inmunidad Innata
10.
Nat Cell Biol ; 25(7): 1061-1072, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37322291

RESUMEN

Traditionally, the mouse has been the favoured vertebrate model for biomedical research, due to its experimental and genetic tractability. However, non-rodent embryological studies highlight that many aspects of early mouse development, such as its egg-cylinder gastrulation and method of implantation, diverge from other mammals, thus complicating inferences about human development. Like the human embryo, rabbits develop as a flat-bilaminar disc. Here we constructed a morphological and molecular atlas of rabbit development. We report transcriptional and chromatin accessibility profiles for over 180,000 single cells and high-resolution histology sections from embryos spanning gastrulation, implantation, amniogenesis and early organogenesis. Using a neighbourhood comparison pipeline, we compare the transcriptional landscape of rabbit and mouse at the scale of the entire organism. We characterize the gene regulatory programmes underlying trophoblast differentiation and identify signalling interactions involving the yolk sac mesothelium during haematopoiesis. We demonstrate how the combination of both rabbit and mouse atlases can be leveraged to extract new biological insights from sparse macaque and human data. The datasets and computational pipelines reported here set a framework for a broader cross-species approach to decipher early mammalian development, and are readily adaptable to deploy single-cell comparative genomics more broadly across biomedical research.


Asunto(s)
Gastrulación , Organogénesis , Conejos , Humanos , Animales , Ratones , Gastrulación/genética , Organogénesis/genética , Implantación del Embrión/genética , Embrión de Mamíferos , Diferenciación Celular , Desarrollo Embrionario/genética , Mamíferos
11.
Cell Rep ; 42(6): 112613, 2023 06 27.
Artículo en Inglés | MEDLINE | ID: mdl-37302069

RESUMEN

Certain serum proteins, including C-reactive protein (CRP) and D-dimer, have prognostic value in patients with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Nonetheless, these factors are non-specific, providing limited mechanistic insight into the peripheral blood mononuclear cell (PBMC) populations that drive the pathogenesis of severe COVID-19. To identify cellular phenotypes associated with disease, we performed a comprehensive, unbiased analysis of total and plasma-membrane PBMC proteomes from 40 unvaccinated individuals with SARS-CoV-2, spanning the whole disease spectrum. Combined with RNA sequencing (RNA-seq) and flow cytometry from the same donors, we define a comprehensive multi-omic profile for each severity level, revealing that immune-cell dysregulation progresses with increasing disease. The cell-surface proteins CEACAMs1, 6, and 8, CD177, CD63, and CD89 are strongly associated with severe COVID-19, corresponding to the emergence of atypical CD3+CD4+CEACAM1/6/8+CD177+CD63+CD89+ and CD16+CEACAM1/6/8+ mononuclear cells. Utilization of these markers may facilitate real-time patient assessment by flow cytometry and identify immune populations that could be targeted to ameliorate immunopathology.


Asunto(s)
COVID-19 , Humanos , SARS-CoV-2 , Leucocitos Mononucleares , Proteómica , Fenotipo
12.
Nat Cell Biol ; 25(1): 30-41, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36650381

RESUMEN

Haematopoietic ageing is marked by a loss of regenerative capacity and skewed differentiation from haematopoietic stem cells (HSCs), leading to impaired blood production. Signals from the bone marrow niche tailor blood production, but the contribution of the old niche to haematopoietic ageing remains unclear. Here we characterize the inflammatory milieu that drives both niche and haematopoietic remodelling. We find decreased numbers and functionality of osteoprogenitors at the endosteum and expansion of central marrow LepR+ mesenchymal stromal cells associated with deterioration of the sinusoidal vasculature. Together, they create a degraded and inflamed old bone marrow niche. Niche inflammation in turn drives the chronic activation of emergency myelopoiesis pathways in old HSCs and multipotent progenitors, which promotes myeloid differentiation and hinders haematopoietic regeneration. Moreover, we show how production of interleukin-1ß (IL-1ß) by the damaged endosteum acts in trans to drive the proinflammatory nature of the central marrow, with damaging consequences for the old blood system. Notably, niche deterioration, HSC dysfunction and defective regeneration can all be ameliorated by blocking IL-1 signalling. Our results demonstrate that targeting IL-1 as a key mediator of niche inflammation is a tractable strategy to improve blood production during ageing.


Asunto(s)
Médula Ósea , Células Madre Hematopoyéticas , Médula Ósea/metabolismo , Diferenciación Celular , Hematopoyesis , Células Madre Hematopoyéticas/metabolismo , Nicho de Células Madre , Interleucina-1/metabolismo
13.
Rev. esp. patol ; 55(4): 288-291, Oct-Dic. 2022. ilus
Artículo en Español | IBECS | ID: ibc-210621

RESUMEN

El tumor fibroso solitario es una neoplasia de origen mesenquimal que suele darse en la pleura y que normalmente tiene un curso benigno. La localización intrapulmonar es rara y aún más raro es el patrón adenofibromatoso. Presentamos un caso de un tumor fibroso solitario intrapulmonar con características adenofibromatosas en un paciente con antecedente de adenocarcinoma de próstata. El tumor mostró características inmunohistoquímicas de positividad para STAT6, CD34 y Bcl-2.(AU)


Solitary fibrous tumor is a neoplasm of mesenchymal origin that generally occurs in the pleura and is usually benign. An intrapulmonary location is rare and the adenofibromatous pattern is even more infrequent. We present a case of a solitary intrapulmonary fibrous tumor with adenofibromatous characteristics in a patient with a history of adenocarcinoma of the prostate. Immunohistochemically, the tumor was positive for STAT6, CD34 and Bcl-2.(AU)


Asunto(s)
Humanos , Masculino , Anciano , Tumor Fibroso Solitario Pleural , Adenofibroma , Pacientes Internos , Examen Físico , Evaluación de Síntomas , Anamnesis , Prostatectomía , Tomografía Computarizada por Rayos X , Patología , Servicio de Patología en Hospital , Neoplasias
14.
Rev Esp Patol ; 55(4): 288-291, 2022.
Artículo en Español | MEDLINE | ID: mdl-36154739

RESUMEN

Solitary fibrous tumor is a neoplasm of mesenchymal origin that generally occurs in the pleura and is usually benign. An intrapulmonary location is rare and the adenofibromatous pattern is even more infrequent. We present a case of a solitary intrapulmonary fibrous tumor with adenofibromatous characteristics in a patient with a history of adenocarcinoma of the prostate. Immunohistochemically, the tumor was positive for STAT6, CD34 and Bcl-2.


Asunto(s)
Tumores Fibrosos Solitarios , Antígenos CD34 , Humanos , Masculino , Próstata/patología , Proteínas Proto-Oncogénicas c-bcl-2 , Tumores Fibrosos Solitarios/patología
15.
iScience ; 25(3): 103971, 2022 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-35224470

RESUMEN

Clotting Factor V (FV) is primarily synthesized in the liver and when cleaved by thrombin forms pro-coagulant Factor Va (FVa). Using whole blood RNAseq and scRNAseq of peripheral blood mononuclear cells, we find that FV mRNA is expressed in leukocytes, and identify neutrophils, monocytes, and T regulatory cells as sources of increased FV in hospitalized patients with COVID-19. Proteomic analysis confirms increased FV in circulating neutrophils in severe COVID-19, and immunofluorescence microscopy identifies FV in lung-infiltrating leukocytes in COVID-19 lung disease. Increased leukocyte FV expression in severe disease correlates with T-cell lymphopenia. Both plasma-derived and a cleavage resistant recombinant FV, but not thrombin cleaved FVa, suppress T-cell proliferation in vitro. Anticoagulants that reduce FV conversion to FVa, including heparin, may have the unintended consequence of suppressing the adaptive immune system.

16.
Nature ; 602(7896): 321-327, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34937051

RESUMEN

It is not fully understood why COVID-19 is typically milder in children1-3. Here, to examine the differences between children and adults in their response to SARS-CoV-2 infection, we analysed paediatric and adult patients with COVID-19 as well as healthy control individuals (total n = 93) using single-cell multi-omic profiling of matched nasal, tracheal, bronchial and blood samples. In the airways of healthy paediatric individuals, we observed cells that were already in an interferon-activated state, which after SARS-CoV-2 infection was further induced especially in airway immune cells. We postulate that higher paediatric innate interferon responses restrict viral replication and disease progression. The systemic response in children was characterized by increases in naive lymphocytes and a depletion of natural killer cells, whereas, in adults, cytotoxic T cells and interferon-stimulated subpopulations were significantly increased. We provide evidence that dendritic cells initiate interferon signalling in early infection, and identify epithelial cell states associated with COVID-19 and age. Our matching nasal and blood data show a strong interferon response in the airways with the induction of systemic interferon-stimulated populations, which were substantially reduced in paediatric patients. Together, we provide several mechanisms that explain the milder clinical syndrome observed in children.


Asunto(s)
COVID-19/sangre , COVID-19/inmunología , Células Dendríticas/inmunología , Interferones/inmunología , Células Asesinas Naturales/inmunología , SARS-CoV-2/inmunología , Linfocitos T Citotóxicos/inmunología , Adulto , Bronquios/inmunología , Bronquios/virología , COVID-19/patología , Chicago , Estudios de Cohortes , Progresión de la Enfermedad , Células Epiteliales/citología , Células Epiteliales/inmunología , Células Epiteliales/virología , Femenino , Humanos , Inmunidad Innata , Londres , Masculino , Mucosa Nasal/inmunología , Mucosa Nasal/virología , SARS-CoV-2/crecimiento & desarrollo , Análisis de la Célula Individual , Tráquea/virología , Adulto Joven
17.
Immunity ; 54(6): 1257-1275.e8, 2021 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-34051148

RESUMEN

The kinetics of the immune changes in COVID-19 across severity groups have not been rigorously assessed. Using immunophenotyping, RNA sequencing, and serum cytokine analysis, we analyzed serial samples from 207 SARS-CoV2-infected individuals with a range of disease severities over 12 weeks from symptom onset. An early robust bystander CD8+ T cell immune response, without systemic inflammation, characterized asymptomatic or mild disease. Hospitalized individuals had delayed bystander responses and systemic inflammation that was already evident near symptom onset, indicating that immunopathology may be inevitable in some individuals. Viral load did not correlate with this early pathological response but did correlate with subsequent disease severity. Immune recovery is complex, with profound persistent cellular abnormalities in severe disease correlating with altered inflammatory responses, with signatures associated with increased oxidative phosphorylation replacing those driven by cytokines tumor necrosis factor (TNF) and interleukin (IL)-6. These late immunometabolic and immune defects may have clinical implications.


Asunto(s)
Linfocitos T CD8-positivos/inmunología , COVID-19/inmunología , COVID-19/virología , Interacciones Huésped-Patógeno/inmunología , Activación de Linfocitos/inmunología , SARS-CoV-2/inmunología , Biomarcadores , Linfocitos T CD8-positivos/metabolismo , COVID-19/diagnóstico , COVID-19/genética , Citocinas/metabolismo , Susceptibilidad a Enfermedades , Perfilación de la Expresión Génica , Humanos , Mediadores de Inflamación/metabolismo , Estudios Longitudinales , Activación de Linfocitos/genética , Fosforilación Oxidativa , Fenotipo , Pronóstico , Especies Reactivas de Oxígeno/metabolismo , Índice de Severidad de la Enfermedad , Transcriptoma
18.
Methods Mol Biol ; 2308: 301-337, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34057731

RESUMEN

The study of hematopoiesis has been revolutionized in recent years by the application of single-cell RNA sequencing technologies. The technique coupled with rapidly developing bioinformatic analysis has provided great insight into the cell type compositions of many populations previously defined by their cell surface phenotype. Moreover, transcriptomic information enables the identification of individual molecules and pathways which define novel cell populations and their transitions including cell lineage decisions. Combining single-cell transcriptional profiling with molecular perturbations allows functional analysis of individual factors in gene regulatory networks and better understanding of the earliest stages of malignant transformation. In this chapter we describe a comprehensive protocol for scRNA-Seq analysis of the mouse bone marrow, using both plate-based (low throughput) and droplet-based (high throughput) methods. The protocol includes instructions for sample preparation, an antibody panel for flow cytometric purification of hematopoietic progenitors with index sorting for plate-based analysis or in bulk for droplet-based methods. The plate-based protocol described in this chapter is a combination of the Smart-Seq2 and mcSCRB-Seq protocols, optimized in our laboratory. It utilizes off-the-shelf reagents for cDNA preparation, is amenable to automation using a liquid handler, and takes 4 days from preparation of the cells for sorting to producing a sequencing-ready library. The droplet-based method (using for instance the 10× Genomics platform) relies on the manufacturer's user guide and commercial reagents, and takes 3 days from isolation of the cells to the production of a library ready for sequencing.


Asunto(s)
Perfilación de la Expresión Génica , Hematopoyesis , Células Madre Hematopoyéticas/fisiología , Análisis de la Célula Individual , Transcriptoma , Animales , Linaje de la Célula , Separación Celular , Citometría de Flujo , Biblioteca de Genes , Redes Reguladoras de Genes , Hematopoyesis/genética , Ratones , Fenotipo , RNA-Seq
19.
Nat Med ; 27(5): 904-916, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33879890

RESUMEN

Analysis of human blood immune cells provides insights into the coordinated response to viral infections such as severe acute respiratory syndrome coronavirus 2, which causes coronavirus disease 2019 (COVID-19). We performed single-cell transcriptome, surface proteome and T and B lymphocyte antigen receptor analyses of over 780,000 peripheral blood mononuclear cells from a cross-sectional cohort of 130 patients with varying severities of COVID-19. We identified expansion of nonclassical monocytes expressing complement transcripts (CD16+C1QA/B/C+) that sequester platelets and were predicted to replenish the alveolar macrophage pool in COVID-19. Early, uncommitted CD34+ hematopoietic stem/progenitor cells were primed toward megakaryopoiesis, accompanied by expanded megakaryocyte-committed progenitors and increased platelet activation. Clonally expanded CD8+ T cells and an increased ratio of CD8+ effector T cells to effector memory T cells characterized severe disease, while circulating follicular helper T cells accompanied mild disease. We observed a relative loss of IgA2 in symptomatic disease despite an overall expansion of plasmablasts and plasma cells. Our study highlights the coordinated immune response that contributes to COVID-19 pathogenesis and reveals discrete cellular components that can be targeted for therapy.


Asunto(s)
COVID-19/inmunología , Proteoma , SARS-CoV-2/inmunología , Análisis de la Célula Individual/métodos , Transcriptoma , Estudios Transversales , Humanos , Monocitos/inmunología , Receptores de Antígenos de Linfocitos B/inmunología , Receptores de Antígenos de Linfocitos T/inmunología , Linfocitos T/inmunología
20.
Phys Chem Chem Phys ; 23(9): 5069-5073, 2021 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-33655288

RESUMEN

UVA-induced deleterious effect of thiopurine prodrugs including azathioprine, 6-mercaptopurine and 6-thioguanine (6-TG) increases the risk of cancer development due to the incorporation of 6-TG in patients' DNA. The catalytic mechanism by which thiobases act as a sustained oxidant producer has yet to be explored, especially through the Type I electron transfer pathway that produces superoxide radicals (O2˙-). Under Fenton-like conditions O2˙- radicals convert to extremely reactive hydroxyl radicals (˙OH), thus carrying even higher risk of biological damage than that induced by the well-studied type II reaction. By monitoring 6-TG/UVA-induced photochemistry in mass spectra and superoxide radicals (O2˙-) via nitro blue tetrazolium (NBT) reduction, this work provides two new findings: (1) in the presence of reduced glutathione (GSH), the production of O2˙-via the type I reaction is enhanced 10-fold. 6-TG thiyl radicals are identified as the primary intermediate formed in the reaction of 6-TG with O2˙-. The restoration of 6-TG and concurrent generation of O2˙- occur via a 3-step-cycle: 6-TG type I photosensitization, O2˙- oxidation and GSH reduction. (2) In the absence of GSH, 6-TG thiyl radicals undergo oxygen addition and sulfur dioxide removal to form carbon radicals (C6) which further convert to thioether by reacting with 6-TG molecules. These findings help explain not only thiol-regulation in a biological system but chemoprevention of cancer.


Asunto(s)
ADN/química , ADN/efectos de la radiación , Glutatión/química , Superóxidos/química , Tioguanina/química , Catálisis , Dimerización , Radicales Libres/química , Eliminación de Gen , Humanos , Radical Hidroxilo/química , Oxidación-Reducción , Oxígeno/química , Trastornos por Fotosensibilidad , Sulfuros/química , Rayos Ultravioleta
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA