Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Elife ; 122023 03 20.
Artículo en Inglés | MEDLINE | ID: mdl-36940134

RESUMEN

The immunoglobulin-like lectin receptor CD169 (Siglec-1) mediates the capture of HIV-1 by activated dendritic cells (DCs) through binding to sialylated ligands. These interactions result in a more efficient virus capture as compared to resting DCs, although the underlying mechanisms are poorly understood. Using a combination of super-resolution microscopy, single-particle tracking and biochemical perturbations we studied the nanoscale organization of Siglec-1 on activated DCs and its impact on viral capture and its trafficking to a single viral-containing compartment. We found that activation of DCs leads to Siglec-1 basal nanoclustering at specific plasma membrane regions where receptor diffusion is constrained by Rho-ROCK activation and formin-dependent actin polymerization. Using liposomes with varying ganglioside concentrations, we further demonstrate that Siglec-1 nanoclustering enhances the receptor avidity to limiting concentrations of gangliosides carrying sialic ligands. Binding to either HIV-1 particles or ganglioside-bearing liposomes lead to enhanced Siglec-1 nanoclustering and global actin rearrangements characterized by a drop in RhoA activity, facilitating the final accumulation of viral particles in a single sac-like compartment. Overall, our work provides new insights on the role of the actin machinery of activated DCs in regulating the formation of basal Siglec-1 nanoclustering, being decisive for the capture and actin-dependent trafficking of HIV-1 into the virus-containing compartment.


Asunto(s)
Infecciones por VIH , VIH-1 , Humanos , Células Dendríticas/metabolismo , Lectina 1 Similar a Ig de Unión al Ácido Siálico/metabolismo , VIH-1/fisiología , Actinas/metabolismo , Liposomas/metabolismo , Ligandos , Gangliósidos/metabolismo
2.
Int J Mol Sci ; 24(3)2023 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-36768712

RESUMEN

The Raman phenomenon is based on the spontaneous inelastic scattering of light, which depends on the molecular characteristics of the dispersant. Therefore, Raman spectroscopy and imaging allow us to obtain direct information, in a label-free manner, from the chemical composition of the sample. Since it is well established that the development of many brain diseases is associated with biochemical alterations of the affected tissue, Raman spectroscopy and imaging have emerged as promising tools for the diagnosis of ailments. A combination of Raman spectroscopy and/or imaging with tagged molecules could also help in drug delivery and tracing for treatment of brain diseases. In this review, we first describe the basics of the Raman phenomenon and spectroscopy. Then, we delve into the Raman spectroscopy and imaging modes and the Raman-compatible tags. Finally, we center on the application of Raman in the study, diagnosis, and treatment of brain diseases, by focusing on traumatic brain injury and ischemia, neurodegenerative disorders, and brain cancer.


Asunto(s)
Lesiones Traumáticas del Encéfalo , Neoplasias Encefálicas , Humanos , Espectrometría Raman/métodos , Diagnóstico por Imagen , Neoplasias Encefálicas/diagnóstico
3.
Int J Mol Sci ; 23(23)2022 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-36499680

RESUMEN

Interorganelle membrane contact sites (MCS) are areas of close vicinity between the membranes of two organelles that are maintained by protein tethers. Recently, a significant research effort has been made to study MCS, as they are implicated in a wide range of biological functions, such as organelle biogenesis and division, apoptosis, autophagy, and ion and phospholipid homeostasis. Their composition, characteristics, and dynamics can be studied by different techniques, but in recent years super-resolution fluorescence microscopy (SRFM) has emerged as a powerful tool for studying MCS. In this review, we first explore the main characteristics and biological functions of MCS and summarize the different approaches for studying them. Then, we center on SRFM techniques that have been used to study MCS. For each of the approaches, we summarize their working principle, discuss their advantages and limitations, and explore the main discoveries they have uncovered in the field of MCS.


Asunto(s)
Membranas Mitocondriales , Orgánulos , Microscopía Fluorescente/métodos , Orgánulos/metabolismo
4.
Adv Biol (Weinh) ; 6(3): e2101264, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35119227

RESUMEN

The viral entry consists of several sequential events that ensure the attachment of the virus to the host cell and the introduction of its genetic material for the continuation of the replication cycle. Both cellular and viral lipids have gained a wider focus in recent years in the field of viral entry, as they are found to play key roles in different steps of the process. The specific role is summarized that lipids and lipid membrane nanostructures play in viral attachment, fusion, and immune evasion and how they can be targeted with antiviral therapies. Finally, some of the limitations of techniques commonly used for protein-lipid interactions studies are discussed, and new emerging tools are reviewed that can be applied to this field.


Asunto(s)
Internalización del Virus , Virus , Lípidos
5.
Adv Sci (Weinh) ; 9(11): e2105170, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35166455

RESUMEN

The cytokine interferon-gamma (IFN-γ) is a master regulator of innate and adaptive immunity involved in a broad array of human diseases that range from atherosclerosis to cancer. IFN-γ exerts it signaling action by binding to a specific cell surface receptor, the IFN-γ receptor (IFN-γR), whose activation critically depends on its partition into lipid nanodomains. However, little is known about the impact of specific lipids on IFN-γR signal transduction activity. Here, a new conserved cholesterol (chol) binding motif localized within its single transmembrane domain is identified. Through direct binding, chol drives the partition of IFN-γR2 chains into plasma membrane lipid nanodomains, orchestrating IFN-γR oligomerization and transmembrane signaling. Bioinformatics studies show that the signature sequence stands for a conserved chol-binding motif presented in many mammalian membrane proteins. The discovery of chol as the molecular switch governing IFN-γR transmembrane signaling represents a significant advance for understanding the mechanism of lipid selectivity by membrane proteins, but also for figuring out the role of lipids in modulating cell surface receptor function. Finally, this study suggests that inhibition of the chol-IFNγR2 interaction may represent a potential therapeutic strategy for various IFN-γ-dependent diseases.


Asunto(s)
Receptores de Interferón , Transducción de Señal , Animales , Sitios de Unión , Colesterol , Humanos , Interferón gamma/metabolismo , Interferón gamma/farmacología , Lípidos , Mamíferos/metabolismo , Receptores de Interferón/metabolismo , Receptor de Interferón gamma
6.
Biochim Biophys Acta Biomembr ; 1864(1): 183813, 2022 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-34748743

RESUMEN

Cellular membranes are fundamental building blocks regulating an extensive repertoire of biological functions. These structures contain lipids and membrane proteins that are known to laterally self-aggregate in the plane of the membrane, forming defined membrane nanoscale domains essential for protein activity. Membrane rafts are described as heterogeneous, dynamic, and short-lived cholesterol- and sphingolipid-enriched membrane nanodomains (10-200 nm) induced by lipid-protein and lipid-lipid interactions. Those membrane nanodomains have been extensively characterized using model membranes and in silico methods. However, despite the development of advanced fluorescence microscopy techniques, undoubted nanoscale visualization by imaging techniques of membrane rafts in the membrane of unperturbed living cells is still uncompleted, increasing the skepticism about their existence. Here, we broadly review recent biochemical and microscopy techniques used to investigate membrane rafts in living cells and we enumerate persistent open questions to answer before unlocking the mystery of membrane rafts in living cells.


Asunto(s)
Membrana Celular/ultraestructura , Microdominios de Membrana/ultraestructura , Proteínas de la Membrana/ultraestructura , Membrana Celular/química , Membrana Celular/genética , Humanos , Transporte Iónico/genética , Microdominios de Membrana/química , Microdominios de Membrana/genética , Proteínas de la Membrana/química , Proteínas de la Membrana/genética , Esfingolípidos/química , Esfingolípidos/genética
7.
Small Methods ; 5(9): e2100430, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34928061

RESUMEN

Despite more than 20 years of work since the lipid raft concept was proposed, the existence of these nanostructures remains highly controversial due to the lack of noninvasive methods to investigate their native nanorganization in living unperturbed cells. There is an unmet need for probes for direct imaging of nanoscale membrane dynamics with high spatial and temporal resolution in living cells. In this paper, a bioorthogonal-based cholesterol probe (chol-N3 ) is developed that, combined with nanoscopy, becomes a new powerful method for direct visualization and characterization of lipid raft at unprecedented resolution in living cells. The chol-N3 probe mimics cholesterol in synthetic and cellular membranes without perturbation. When combined with live-cell super-resolution microscopy, chol-N3 demonstrates the existence of cholesterol-rich nanodomains of <50 nm at the plasma membrane of resting living cells. Using this tool, the lipid membrane structure of such subdiffraction limit domains is identified, and the nanoscale spatiotemporal organization of cholesterol in the plasma membrane of living cells reveals multiple cholesterol diffusion modes at different spatial localizations. Finally, imaging across thick organ samples outlines the potential of this new method to address essential biological questions that were previously beyond reach.


Asunto(s)
Colesterol/análisis , Microdominios de Membrana/química , Imagen Molecular/métodos , Sondas Moleculares/química , Neuronas/citología , Animales , Células Cultivadas , Colesterol/química , Células HeLa , Humanos , Microscopía Fluorescente , Modelos Moleculares , Conformación Molecular , Neuronas/química , Ratas , Análisis Espacio-Temporal
8.
Adv Sci (Weinh) ; 8(3): 2003468, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33552873

RESUMEN

HIV-1 entry requires the redistribution of envelope glycoproteins (Env) into a cluster and the presence of cholesterol (chol) in the viral membrane. However, the molecular mechanisms underlying the specific role of chol in infectivity and the driving force behind Env clustering remain unknown. Here, gp41 is demonstrated to directly interact with chol in the viral membrane via residues 751-854 in the cytoplasmic tail (CT751-854). Super-resolution stimulated emission depletion (STED) nanoscopy analysis of Env distribution further demonstrates that both truncation of gp41 CT751-854 and depletion of chol leads to dispersion of Env clusters in the viral membrane and inhibition of virus entry. This work reveals a direct interaction of gp41 CT with chol and indicates that this interaction is an important orchestrator of Env clustering.

9.
Front Immunol ; 9: 1983, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30233582

RESUMEN

The envelope of Human Immunodeficiency Virus type 1 (HIV-1) consists of a liquid-ordered membrane enriched in raft lipids and containing the viral glycoproteins. Previous studies demonstrated that changes in viral membrane lipid composition affecting membrane structure or curvature can impair infectivity. Here, we describe novel antiviral compounds that were identified by screening compound libraries based on raft lipid-like scaffolds. Three distinct molecular structures were chosen for mode-of-action studies, a sterol derivative (J391B), a sphingosine derivative (J582C) and a long aliphatic chain derivative (IBS70). All three target the viral membrane and inhibit virus infectivity at the stage of fusion without perturbing virus stability or affecting virion-associated envelope glycoproteins. Their effect did not depend on the expressed envelope glycoproteins or a specific entry route, being equally strong in HIV pseudotypes carrying VSV-G or MLV-Env glycoproteins. Labeling with laurdan, a reporter of membrane order, revealed different membrane structure alterations upon compound treatment of HIV-1, which correlated with loss of infectivity. J582C and IBS70 decreased membrane order in distinctive ways, whereas J391B increased membrane order. The compounds' effects on membrane order were reproduced in liposomes generated from extracted HIV lipids and thus independent both of virion proteins and of membrane leaflet asymmetry. Remarkably, increase of membrane order by J391B required phosphatidylserine, a lipid enriched in the HIV envelope. Counterintuitively, mixtures of two compounds with opposite effects on membrane order, J582C and J391B, did not neutralize each other but synergistically inhibited HIV infection. Thus, altering membrane order, which can occur by different mechanisms, constitutes a novel antiviral mode of action that may be of general relevance for enveloped viruses and difficult to overcome by resistance development.


Asunto(s)
Antivirales/uso terapéutico , Materiales Biomiméticos/uso terapéutico , Infecciones por VIH/metabolismo , VIH-1/fisiología , Lípidos/química , Microdominios de Membrana/metabolismo , Productos del Gen env del Virus de la Inmunodeficiencia Humana/metabolismo , Antivirales/química , Materiales Biomiméticos/química , Ácidos Grasos/química , Células HEK293 , Infecciones por VIH/tratamiento farmacológico , Infecciones por VIH/transmisión , VIH-1/patogenicidad , Humanos , Lípidos/uso terapéutico , Microdominios de Membrana/química , Microdominios de Membrana/virología , Estructura Molecular , Esfingosina/análogos & derivados , Esfingosina/química , Esteroles/química , Virulencia , Internalización del Virus/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...