Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 115(39): E9085-E9094, 2018 09 25.
Artículo en Inglés | MEDLINE | ID: mdl-30201724

RESUMEN

Maturation of iron-sulfur (Fe-S) proteins in eukaryotes requires complex machineries in mitochondria and cytosol. Initially, Fe-S clusters are assembled on dedicated scaffold proteins and then are trafficked to target apoproteins. Within the cytosolic Fe-S protein assembly (CIA) machinery, the conserved P-loop nucleoside triphosphatase Nbp35 performs a scaffold function. In yeast, Nbp35 cooperates with the related Cfd1, which is evolutionary less conserved and is absent in plants. Here, we investigated the potential scaffold function of human CFD1 (NUBP2) in CFD1-depleted HeLa cells by measuring Fe-S enzyme activities or 55Fe incorporation into Fe-S target proteins. We show that CFD1, in complex with NBP35 (NUBP1), performs a crucial role in the maturation of all tested cytosolic and nuclear Fe-S proteins, including essential ones involved in protein translation and DNA maintenance. CFD1 also matures iron regulatory protein 1 and thus is critical for cellular iron homeostasis. To better understand the scaffold function of CFD1-NBP35, we resolved the crystal structure of Chaetomium thermophilum holo-Cfd1 (ctCfd1) at 2.6-Å resolution as a model Cfd1 protein. Importantly, two ctCfd1 monomers coordinate a bridging [4Fe-4S] cluster via two conserved cysteine residues. The surface-exposed topology of the cluster is ideally suited for both de novo assembly and facile transfer to Fe-S apoproteins mediated by other CIA factors. ctCfd1 specifically interacted with ATP, which presumably associates with a pocket near the Cfd1 dimer interface formed by the conserved Walker motif. In contrast, ctNbp35 preferentially bound GTP, implying differential regulation of the two fungal scaffold components during Fe-S cluster assembly and/or release.


Asunto(s)
Apoproteínas/química , Chaetomium/química , Proteínas Fúngicas/química , Proteínas de Unión al GTP/química , Proteína 1 Reguladora de Hierro/química , Proteínas Hierro-Azufre/química , Secuencias de Aminoácidos , Apoproteínas/genética , Apoproteínas/metabolismo , Dominio Catalítico , Chaetomium/genética , Chaetomium/metabolismo , Cristalografía por Rayos X , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Proteínas de Unión al GTP/genética , Proteínas de Unión al GTP/metabolismo , Células HeLa , Humanos , Proteína 1 Reguladora de Hierro/genética , Proteína 1 Reguladora de Hierro/metabolismo , Proteínas Hierro-Azufre/genética , Proteínas Hierro-Azufre/metabolismo
3.
Cell Metab ; 18(2): 187-98, 2013 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-23891004

RESUMEN

Numerous cytosolic and nuclear proteins involved in metabolism, DNA maintenance, protein translation, or iron homeostasis depend on iron-sulfur (Fe/S) cofactors, yet their assembly is poorly defined. Here, we identify and characterize human CIA2A (FAM96A), CIA2B (FAM96B), and CIA1 (CIAO1) as components of the cytosolic Fe/S protein assembly (CIA) machinery. CIA1 associates with either CIA2A or CIA2B and the CIA-targeting factor MMS19. The CIA2B-CIA1-MMS19 complex binds to and facilitates assembly of most cytosolic-nuclear Fe/S proteins. In contrast, CIA2A specifically matures iron regulatory protein 1 (IRP1), which is critical for cellular iron homeostasis. Surprisingly, a second layer of iron regulation involves the stabilization of IRP2 by CIA2A binding or upon depletion of CIA2B or MMS19, even though IRP2 lacks an Fe/S cluster. In summary, CIA2B-CIA1-MMS19 and CIA2A-CIA1 assist different branches of Fe/S protein assembly and intimately link this process to cellular iron regulation via IRP1 Fe/S cluster maturation and IRP2 stabilization.


Asunto(s)
Proteínas Portadoras/metabolismo , Proteínas Hierro-Azufre/biosíntesis , Hierro/metabolismo , Metalochaperonas/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Portadoras/genética , Línea Celular Tumoral , Glicerol-3-Fosfato O-Aciltransferasa/metabolismo , Células HeLa , Homeostasis , Humanos , Proteína 1 Reguladora de Hierro/metabolismo , Proteína 2 Reguladora de Hierro/metabolismo , Proteínas Hierro-Azufre/metabolismo , Metalochaperonas/genética , Metaloproteínas , Proteínas Nucleares/genética , Unión Proteica , Interferencia de ARN , ARN Interferente Pequeño , Factores de Transcripción/metabolismo
4.
Mol Biol Cell ; 23(7): 1157-66, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22323289

RESUMEN

Members of the bacterial and mitochondrial iron-sulfur cluster (ISC) assembly machinery include the so-called A-type ISC proteins, which support the assembly of a subset of Fe/S apoproteins. The human genome encodes two A-type proteins, termed ISCA1 and ISCA2, which are related to Saccharomyces cerevisiae Isa1 and Isa2, respectively. An additional protein, Iba57, physically interacts with Isa1 and Isa2 in yeast. To test the cellular role of human ISCA1, ISCA2, and IBA57, HeLa cells were depleted for any of these proteins by RNA interference technology. Depleted cells contained massively swollen and enlarged mitochondria that were virtually devoid of cristae membranes, demonstrating the importance of these proteins for mitochondrial biogenesis. The activities of mitochondrial [4Fe-4S] proteins, including aconitase, respiratory complex I, and lipoic acid synthase, were diminished following depletion of the three proteins. In contrast, the mitochondrial [2Fe-2S] enzyme ferrochelatase and cellular heme content were unaffected. We further provide evidence against a localization and direct Fe/S protein maturation function of ISCA1 and ISCA2 in the cytosol. Taken together, our data suggest that ISCA1, ISCA2, and IBA57 are specifically involved in the maturation of mitochondrial [4Fe-4S] proteins functioning late in the ISC assembly pathway.


Asunto(s)
Proteínas Hierro-Azufre/química , Proteínas Hierro-Azufre/metabolismo , Proteínas Mitocondriales/metabolismo , Citosol/metabolismo , Células HeLa , Homeostasis , Humanos , Hierro/metabolismo , Proteínas Hierro-Azufre/antagonistas & inhibidores , Proteínas Hierro-Azufre/genética , Microscopía Electrónica de Transmisión , Mitocondrias/metabolismo , Mitocondrias/patología , Proteínas Mitocondriales/antagonistas & inhibidores , Proteínas Mitocondriales/genética , Multimerización de Proteína , Procesamiento Proteico-Postraduccional , Interferencia de ARN , ARN Interferente Pequeño/genética , Transducción de Señal
5.
Mol Cell Biol ; 28(17): 5517-28, 2008 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-18573874

RESUMEN

The maturation of cytosolic iron-sulfur (Fe/S) proteins in mammalian cells requires components of the mitochondrial iron-sulfur cluster assembly and export machineries. Little is known about the cytosolic components that may facilitate the assembly process. Here, we identified the cytosolic soluble P-loop NTPase termed huNbp35 (also known as Nubp1) as an Fe/S protein, and we defined its role in the maturation of Fe/S proteins in HeLa cells. Depletion of huNbp35 by RNA interference decreased cell growth considerably, indicating its essential function. The deficiency in huNbp35 was associated with an impaired maturation of the cytosolic Fe/S proteins glutamine phosphoribosylpyrophosphate amidotransferase and iron regulatory protein 1 (IRP1), while mitochondrial Fe/S proteins remained intact. Consequently, huNbp35 is specifically involved in the formation of extramitochondrial Fe/S proteins. The impaired maturation of IRP1 upon huNbp35 depletion had profound consequences for cellular iron metabolism, leading to decreased cellular H-ferritin, increased transferrin receptor levels, and higher transferrin uptake. These properties clearly distinguished huNbp35 from its yeast counterpart Nbp35, which is essential for cytosolic-nuclear Fe/S protein assembly but plays no role in iron regulation. huNbp35 formed a complex with its close homologue huCfd1 (also known as Nubp2) in vivo, suggesting the existence of a heteromeric P-loop NTPase complex that is required for both cytosolic Fe/S protein assembly and cellular iron homeostasis.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Citosol/metabolismo , Homeostasis , Proteínas Hierro-Azufre/metabolismo , Hierro/metabolismo , Aconitato Hidratasa/metabolismo , Adenosina Trifosfatasas/química , Adenosina Trifosfatasas/aislamiento & purificación , Secuencia de Aminoácidos , Animales , Proliferación Celular , Citosol/enzimología , Ferritinas/metabolismo , Glicerol-3-Fosfato O-Aciltransferasa/metabolismo , Células HeLa , Humanos , Proteína 1 Reguladora de Hierro/metabolismo , Ratones , Datos de Secuencia Molecular , Unión Proteica , Biosíntesis de Proteínas , Interferencia de ARN , Receptores de Transferrina/biosíntesis , Elementos de Respuesta
6.
Mol Cell Biol ; 26(15): 5675-87, 2006 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-16847322

RESUMEN

The biogenesis of iron-sulfur (Fe/S) proteins in eukaryotes is a complex process involving more than 20 components. So far, functional investigations have mainly been performed in Saccharomyces cerevisiae. Here, we have analyzed the role of the human cysteine desulfurase Nfs1 (huNfs1), which serves as a sulfur donor in biogenesis. The protein is located predominantly in mitochondria, but small amounts are present in the cytosol/nucleus. huNfs1 was depleted efficiently in HeLa cells by a small interfering RNA (siRNA) approach, resulting in a drastic growth retardation and striking morphological changes of mitochondria. The activities of both mitochondrial and cytosolic Fe/S proteins were strongly impaired, demonstrating that huNfs1 performs an essential function in Fe/S protein biogenesis in human cells. Expression of murine Nfs1 (muNfs1) in huNfs1-depleted cells restored both growth and Fe/S protein activities to wild-type levels, indicating the specificity of the siRNA depletion approach. No complementation of the growth retardation was observed, when muNfs1 was synthesized without its mitochondrial presequence. This extramitochondrial muNfs1 did not support maintenance of Fe/S protein activities, neither in the cytosol nor in mitochondria. In conclusion, our study shows that the essential huNfs1 is required inside mitochondria for efficient maturation of cellular Fe/S proteins. The results have implications for the regulation of iron homeostasis by cytosolic iron regulatory protein 1.


Asunto(s)
Liasas de Carbono-Azufre/metabolismo , Citosol/enzimología , Proteínas Hierro-Azufre/biosíntesis , Hierro/metabolismo , Mitocondrias/enzimología , Secuencia de Aminoácidos , Animales , Liasas de Carbono-Azufre/genética , Vectores Genéticos , Células HeLa , Homeostasis , Humanos , Proteínas Hierro-Azufre/genética , Ratones , Mitocondrias/ultraestructura , Proteínas Mitocondriales , Datos de Secuencia Molecular , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Alineación de Secuencia , Sulfurtransferasas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA