Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 18 de 18
1.
Microb Biotechnol ; 17(5): e14456, 2024 May.
Article En | MEDLINE | ID: mdl-38801001

EXECUTIVE SUMMARY: Microbes are all pervasive in their distribution and influence on the functioning and well-being of humans, life in general and the planet. Microbially-based technologies contribute hugely to the supply of important goods and services we depend upon, such as the provision of food, medicines and clean water. They also offer mechanisms and strategies to mitigate and solve a wide range of problems and crises facing humanity at all levels, including those encapsulated in the sustainable development goals (SDGs) formulated by the United Nations. For example, microbial technologies can contribute in multiple ways to decarbonisation and hence confronting global warming, provide sanitation and clean water to the billions of people lacking them, improve soil fertility and hence food production and develop vaccines and other medicines to reduce and in some cases eliminate deadly infections. They are the foundation of biotechnology, an increasingly important and growing business sector and source of employment, and the centre of the bioeconomy, Green Deal, etc. But, because microbes are largely invisible, they are not familiar to most people, so opportunities they offer to effectively prevent and solve problems are often missed by decision-makers, with the negative consequences this entrains. To correct this lack of vital knowledge, the International Microbiology Literacy Initiative-the IMiLI-is recruiting from the global microbiology community and making freely available, teaching resources for a curriculum in societally relevant microbiology that can be used at all levels of learning. Its goal is the development of a society that is literate in relevant microbiology and, as a consequence, able to take full advantage of the potential of microbes and minimise the consequences of their negative activities. In addition to teaching about microbes, almost every lesson discusses the influence they have on sustainability and the SDGs and their ability to solve pressing problems of societal inequalities. The curriculum thus teaches about sustainability, societal needs and global citizenship. The lessons also reveal the impacts microbes and their activities have on our daily lives at the personal, family, community, national and global levels and their relevance for decisions at all levels. And, because effective, evidence-based decisions require not only relevant information but also critical and systems thinking, the resources also teach about these key generic aspects of deliberation. The IMiLI teaching resources are learner-centric, not academic microbiology-centric and deal with the microbiology of everyday issues. These span topics as diverse as owning and caring for a companion animal, the vast range of everyday foods that are produced via microbial processes, impressive geological formations created by microbes, childhood illnesses and how they are managed and how to reduce waste and pollution. They also leverage the exceptional excitement of exploration and discovery that typifies much progress in microbiology to capture the interest, inspire and motivate educators and learners alike. The IMiLI is establishing Regional Centres to translate the teaching resources into regional languages and adapt them to regional cultures, and to promote their use and assist educators employing them. Two of these are now operational. The Regional Centres constitute the interface between resource creators and educators-learners. As such, they will collect and analyse feedback from the end-users and transmit this to the resource creators so that teaching materials can be improved and refined, and new resources added in response to demand: educators and learners will thereby be directly involved in evolution of the teaching resources. The interactions between educators-learners and resource creators mediated by the Regional Centres will establish dynamic and synergistic relationships-a global societally relevant microbiology education ecosystem-in which creators also become learners, teaching resources are optimised and all players/stakeholders are empowered and their motivation increased. The IMiLI concept thus embraces the principle of teaching societally relevant microbiology embedded in the wider context of societal, biosphere and planetary needs, inequalities, the range of crises that confront us and the need for improved decisioning, which should ultimately lead to better citizenship and a humanity that is more sustainable and resilient. ABSTRACT: The biosphere of planet Earth is a microbial world: a vast reactor of countless microbially driven chemical transformations and energy transfers that push and pull many planetary geochemical processes, including the cycling of the elements of life, mitigate or amplify climate change (e.g., Nature Reviews Microbiology, 2019, 17, 569) and impact the well-being and activities of all organisms, including humans. Microbes are both our ancestors and creators of the planetary chemistry that allowed us to evolve (e.g., Life's engines: How microbes made earth habitable, 2023). To understand how the biosphere functions, how humans can influence its development and live more sustainably with the other organisms sharing it, we need to understand the microbes. In a recent editorial (Environmental Microbiology, 2019, 21, 1513), we advocated for improved microbiology literacy in society. Our concept of microbiology literacy is not based on knowledge of the academic subject of microbiology, with its multitude of component topics, plus the growing number of additional topics from other disciplines that become vitally important elements of current microbiology. Rather it is focused on microbial activities that impact us-individuals/communities/nations/the human world-and the biosphere and that are key to reaching informed decisions on a multitude of issues that regularly confront us, ranging from personal issues to crises of global importance. In other words, it is knowledge and understanding essential for adulthood and the transition to it, knowledge and understanding that must be acquired early in life in school. The 2019 Editorial marked the launch of the International Microbiology Literacy Initiative, the IMiLI. HERE, WE PRESENT: our concept of how microbiology literacy may be achieved and the rationale underpinning it; the type of teaching resources being created to realise the concept and the framing of microbial activities treated in these resources in the context of sustainability, societal needs and responsibilities and decision-making; and the key role of Regional Centres that will translate the teaching resources into local languages, adapt them according to local cultural needs, interface with regional educators and develop and serve as hubs of microbiology literacy education networks. The topics featuring in teaching resources are learner-centric and have been selected for their inherent relevance, interest and ability to excite and engage. Importantly, the resources coherently integrate and emphasise the overarching issues of sustainability, stewardship and critical thinking and the pervasive interdependencies of processes. More broadly, the concept emphasises how the multifarious applications of microbial activities can be leveraged to promote human/animal, plant, environmental and planetary health, improve social equity, alleviate humanitarian deficits and causes of conflicts among peoples and increase understanding between peoples (Microbial Biotechnology, 2023, 16(6), 1091-1111). Importantly, although the primary target of the freely available (CC BY-NC 4.0) IMiLI teaching resources is schoolchildren and their educators, they and the teaching philosophy are intended for all ages, abilities and cultural spectra of learners worldwide: in university education, lifelong learning, curiosity-driven, web-based knowledge acquisition and public outreach. The IMiLI teaching resources aim to promote development of a global microbiology education ecosystem that democratises microbiology knowledge.


Microbiology , Microbiology/education , Humans , Biotechnology
2.
Microb Biotechnol ; 17(3): e14448, 2024 Mar.
Article En | MEDLINE | ID: mdl-38498302

Pseudomonas putida is a soil bacterium with multiple uses in fermentation and biotransformation processes. P. putida ATCC 12633 can biotransform benzaldehyde and other aldehydes into valuable α-hydroxyketones, such as (S)-2-hydroxypropiophenone. However, poor tolerance of this strain toward chaotropic aldehydes hampers efficient biotransformation processes. To circumvent this problem, we expressed the gene encoding the global regulator PprI from Deinococcus radiodurans, an inducer of pleiotropic proteins promoting DNA repair, in P. putida. Fine-tuned gene expression was achieved using an expression plasmid under the control of the LacIQ /Ptrc system, and the cross-protective role of PprI was assessed against multiple stress treatments. Moreover, the stress-tolerant P. putida strain was tested for 2-hydroxypropiophenone production using whole resting cells in the presence of relevant aldehyde substrates. P. putida cells harbouring the global transcriptional regulator exhibited high tolerance toward benzaldehyde, acetaldehyde, ethanol, butanol, NaCl, H2 O2 and thermal stress, thereby reflecting the multistress protection profile conferred by PprI. Additionally, the engineered cells converted aldehydes to 2-hydroxypropiophenone more efficiently than the parental P. putida strain. 2-Hydroxypropiophenone concentration reached 1.6 g L-1 upon a 3-h incubation under optimized conditions, at a cell concentration of 0.033 g wet cell weight mL-1 in the presence of 20 mM benzaldehyde and 600 mM acetaldehyde. Product yield and productivity were 0.74 g 2-HPP g-1 benzaldehyde and 0.089 g 2-HPP g cell dry weight-1 h-1 , respectively, 35% higher than the control experiments. Taken together, these results demonstrate that introducing PprI from D. radiodurans enhances chaotrope tolerance and 2-HPP production in P. putida ATCC 12633.


Deinococcus , Hydroxypropiophenone , Pseudomonas putida , Benzaldehydes/metabolism , Pseudomonas putida/genetics , Pseudomonas putida/metabolism , Deinococcus/genetics , Acetaldehyde/metabolism
4.
Chembiochem ; 25(6): e202300829, 2024 03 15.
Article En | MEDLINE | ID: mdl-38226957

The chemical evolution of a synthetic cell endowed with a synthetic amino acid as building block, analog to tryptophan, required the emergence of key mutations in genes involved in, inter alia, the general stress response, amino acid metabolism, stringent response, and chemotaxis. Understanding adaptation mechanisms to non-canonical biomass components will inform strategies for engineering synthetic metabolic pathways and cells.


Artificial Cells , Amino Acids , Mutation , Tryptophan , Metabolic Networks and Pathways , Synthetic Biology , Metabolic Engineering
5.
Nat Protoc ; 18(11): 3253-3288, 2023 Nov.
Article En | MEDLINE | ID: mdl-37798358

Much of our current understanding of microbiology is based on the application of genetic engineering procedures. Since their inception (more than 30 years ago), methods based largely on allelic exchange and two-step selection processes have become a cornerstone of contemporary bacterial genetics. While these tools are established for adapted laboratory strains, they have limited applicability in clinical or environmental isolates displaying a large and unknown genetic repertoire that are recalcitrant to genetic modifications. Hence, new tools allowing genetic engineering of intractable bacteria must be developed to gain a comprehensive understanding of them in the context of their biological niche. Herein, we present a method for precise, efficient and rapid engineering of the opportunistic pathogen Pseudomonas aeruginosa. This procedure relies on recombination of short single-stranded DNA facilitated by targeted double-strand DNA breaks mediated by a synthetic Cas9 coupled with the efficient Ssr recombinase. Possible applications include introducing single-nucleotide polymorphisms, short or long deletions, and short DNA insertions using synthetic single-stranded DNA templates, drastically reducing the need of PCR and cloning steps. Our toolkit is encoded on two plasmids, harboring an array of different antibiotic resistance cassettes; hence, this approach can be successfully applied to isolates displaying natural antibiotic resistances. Overall, this toolkit substantially reduces the time required to introduce a range of genetic manipulations to a minimum of five experimental days, and enables a variety of research and biotechnological applications in both laboratory strains and difficult-to-manipulate P. aeruginosa isolates.


CRISPR-Cas Systems , Pseudomonas aeruginosa , Pseudomonas aeruginosa/genetics , DNA, Single-Stranded , Gene Editing/methods , Genetic Engineering/methods
6.
Nat Commun ; 14(1): 6673, 2023 10 21.
Article En | MEDLINE | ID: mdl-37865689

A true circular carbon economy must upgrade waste greenhouse gases. C1-based biomanufacturing is an attractive solution, in which one carbon (C1) molecules (e.g. CO2, formate, methanol, etc.) are converted by microbial cell factories into value-added goods (i.e. food, feed, and chemicals). To render C1-based biomanufacturing cost-competitive, we must adapt microbial metabolism to perform chemical conversions at high rates and yields. To this end, the biotechnology community has undertaken two (seemingly opposing) paths: optimizing natural C1-trophic microorganisms versus engineering synthetic C1-assimilation de novo in model microorganisms. Here, we pose how these approaches can instead create synergies for strengthening the competitiveness of C1-based biomanufacturing as a whole.


Carbon , Metabolic Engineering , Carbon/metabolism , Methanol/metabolism , Biotechnology
7.
Microb Cell Fact ; 22(1): 89, 2023 May 03.
Article En | MEDLINE | ID: mdl-37131175

BACKGROUND: Aromatic α-hydroxy ketones, such as S-2-hydroxypropiophenone (2-HPP), are highly valuable chiral building blocks useful for the synthesis of various pharmaceuticals and natural products. In the present study, enantioselective synthesis of 2-HPP was investigated by free and immobilized whole cells of Pseudomonas putida ATCC 12633 starting from readily-available aldehyde substrates. Whole resting cells of P. putida, previously grown in a culture medium containing ammonium mandelate, are a source of native benzoylformate decarboxylase (BFD) activity. BFD produced by induced P. putida resting cells is a highly active biocatalyst without any further treatment in comparison with partially purified enzyme preparations. These cells can convert benzaldehyde and acetaldehyde into the acyloin compound 2-HPP by BFD-catalyzed enantioselective cross-coupling reaction. RESULTS: The reaction was carried out in the presence of exogenous benzaldehyde (20 mM) and acetaldehyde (600 mM) as substrates in 6 mL of 200 mM phosphate buffer (pH 7) for 3 h. The optimal biomass concentration was assessed to be 0.006 g dry cell weight (DCW) mL- 1. 2-HPP titer, yield and productivity using the free cells were 1.2 g L- 1, 0.56 g 2-HPP/g benzaldehyde (0.4 mol 2-HPP/mol benzaldehyde), 0.067 g 2-HPP g- 1 DCW h- 1, respectively, under optimized biotransformation conditions (30 °C, 200 rpm). Calcium alginate (CA)-polyvinyl alcohol (PVA)-boric acid (BA)-beads were used for cell entrapment. Encapsulated whole-cells were successfully employed in four consecutive cycles for 2-HPP production under aerobic conditions without any noticeable beads degradation. Moreover, there was no production of benzyl alcohol as an unwanted by-product. CONCLUSIONS: Bioconversion by whole P. putida resting cells is an efficient strategy for the production of 2-HPP and other α-hydroxyketones.


Carboxy-Lyases , Hydroxypropiophenone , Pseudomonas putida , Pseudomonas putida/metabolism , Carboxy-Lyases/metabolism , Benzaldehydes/metabolism , Stereoisomerism , Ketones/metabolism , Acetaldehyde/chemistry , Acetaldehyde/metabolism
8.
N Biotechnol ; 74: 1-15, 2023 May 25.
Article En | MEDLINE | ID: mdl-36736693

Automation is playing an increasingly significant role in synthetic biology. Groundbreaking technologies, developed over the past 20 years, have enormously accelerated the construction of efficient microbial cell factories. Integrating state-of-the-art tools (e.g. for genome engineering and analytical techniques) into the design-build-test-learn cycle (DBTLc) will shift the metabolic engineering paradigm from an almost artisanal labor towards a fully automated workflow. Here, we provide a perspective on how a fully automated DBTLc could be harnessed to construct the next-generation bacterial cell factories in a fast, high-throughput fashion. Innovative toolsets and approaches that pushed the boundaries in each segment of the cycle are reviewed to this end. We also present the most recent efforts on automation of the DBTLc, which heralds a fully autonomous pipeline for synthetic biology in the near future.


Metabolic Engineering , Synthetic Biology , Metabolic Engineering/methods
9.
STAR Protoc ; 4(1): 102060, 2023 03 17.
Article En | MEDLINE | ID: mdl-36853682

Mass-spectrometry-based absolute protein quantification uses labeled quantification concatamer (QconCAT) as internal standards (ISs). To calculate the amount of protein(s), the ion intensity ratio between the analyte and its cognate IS is compared in each biological sample. The present protocol describes a systematic workflow to design, produce, and purify QconCATs and to quantify soluble proteins in Pseudomonas putida KT2440. Our methodology enables the quantification of detectable peptide and serves as a versatile platform to produce ISs for different biological systems.


Peptides , Proteomics , Proteomics/methods , Peptides/metabolism , Proteins , Mass Spectrometry , Gram-Negative Bacteria/metabolism
11.
Metab Eng ; 73: 11-25, 2022 09.
Article En | MEDLINE | ID: mdl-35659519

Anthranilate, an intermediate of the shikimate pathway, is a high-value aromatic compound widely used as a precursor in the production of dyes, fragrances, plastics and pharmaceuticals. Traditional strategies adopted for microbial anthranilate production rely on the implementation of auxotrophic strains-which requires aromatic amino acids or complex additives to be supplemented in the culture medium, negatively impacting production costs. In this work, we engineered the soil bacterium Pseudomonas putida for high-titer, glucose-dependent anthranilate production by repurposing elements of the Esa quorum sensing (QS) system of Pantoea stewartii. The PesaS promoter mediated a self-regulated transcriptional response that effectively knocked-down the expression of the trpDC genes. Next, we harnessed the synthetic QS elements to engineer a growth-to-anthranilate production switch. The resulting plasmid-free P. putida strain produced the target compound at 3.8 ± 0.3 mM in shaken-flask cultures after 72 h-a titer >2-fold higher than anthranilate levels reported thus far. Our results highlight the value of dynamic flux regulation for the production of intermediate metabolites within highly-regulated routes (such as the shikimate pathway), thereby circumventing the need of expensive additives.


Pseudomonas putida , Glucose/metabolism , Plasmids , Pseudomonas putida/genetics , Pseudomonas putida/metabolism , Quorum Sensing , ortho-Aminobenzoates/metabolism
12.
Essays Biochem ; 65(2): 319-336, 2021 07 26.
Article En | MEDLINE | ID: mdl-34223620

Biotechnological production in bacteria enables access to numerous valuable chemical compounds. Nowadays, advanced molecular genetic toolsets, enzyme engineering as well as the combinatorial use of biocatalysts, pathways, and circuits even bring new-to-nature compounds within reach. However, the associated substrates and biosynthetic products often cause severe chemical stress to the bacterial hosts. Species of the Pseudomonas clade thus represent especially valuable chassis as they are endowed with multiple stress response mechanisms, which allow them to cope with a variety of harmful chemicals. A built-in cell envelope stress response enables fast adaptations that sustain membrane integrity under adverse conditions. Further, effective export machineries can prevent intracellular accumulation of diverse harmful compounds. Finally, toxic chemicals such as reactive aldehydes can be eliminated by oxidation and stress-induced damage can be recovered. Exploiting and engineering these features will be essential to support an effective production of natural compounds and new chemicals. In this article, we therefore discuss major resistance strategies of Pseudomonads along with approaches pursued for their targeted exploitation and engineering in a biotechnological context. We further highlight strategies for the identification of yet unknown tolerance-associated genes and their utilisation for engineering next-generation chassis and finally discuss effective measures for pathway fine-tuning to establish stable cell factories for the effective production of natural compounds and novel biochemicals.


Pseudomonas putida , Pseudomonas , Biosynthetic Pathways , Biotechnology , Oxidation-Reduction , Pseudomonas/genetics
13.
mSystems ; 6(2)2021 Mar 16.
Article En | MEDLINE | ID: mdl-33727391

Glucose-6-phosphate dehydrogenase (G6PDH) is widely distributed in nature and catalyzes the first committing step in the oxidative branch of the pentose phosphate (PP) pathway, feeding either the reductive PP or the Entner-Doudoroff pathway. Besides its role in central carbon metabolism, this dehydrogenase provides reduced cofactors, thereby affecting redox balance. Although G6PDH is typically considered to display specificity toward NADP+, some variants accept NAD+ similarly or even preferentially. Furthermore, the number of G6PDH isozymes encoded in bacterial genomes varies from none to more than four orthologues. On this background, we systematically analyzed the interplay of the three G6PDH isoforms of the soil bacterium Pseudomonas putida KT2440 from genomic, genetic, and biochemical perspectives. P. putida represents an ideal model to tackle this endeavor, as its genome harbors gene orthologues for most dehydrogenases in central carbon metabolism. We show that the three G6PDHs of strain KT2440 have different cofactor specificities and that the isoforms encoded by zwfA and zwfB carry most of the activity, acting as metabolic "gatekeepers" for carbon sources that enter at different nodes of the biochemical network. Moreover, we demonstrate how multiplication of G6PDH isoforms is a widespread strategy in bacteria, correlating with the presence of an incomplete Embden-Meyerhof-Parnas pathway. The abundance of G6PDH isoforms in these species goes hand in hand with low NADP+ affinity, at least in one isozyme. We propose that gene duplication and relaxation in cofactor specificity is an evolutionary strategy toward balancing the relative production of NADPH and NADH.IMPORTANCE Protein families have likely arisen during evolution by gene duplication and divergence followed by neofunctionalization. While this phenomenon is well documented for catabolic activities (typical of environmental bacteria that colonize highly polluted niches), the coexistence of multiple isozymes in central carbon catabolism remains relatively unexplored. We have adopted the metabolically versatile soil bacterium Pseudomonas putida KT2440 as a model to interrogate the physiological and evolutionary significance of coexisting glucose-6-phosphate dehydrogenase (G6PDH) isozymes. Our results show that each of the three G6PDHs in this bacterium display distinct biochemical properties, especially at the level of cofactor preference, impacting bacterial physiology in a carbon source-dependent fashion. Furthermore, the presence of multiple G6PDHs differing in NAD+ or NADP+ specificity in bacterial species strongly correlates with their predominant metabolic lifestyle. Our findings support the notion that multiplication of genes encoding cofactor-dependent dehydrogenases is a general evolutionary strategy toward achieving redox balance according to the growth conditions.

14.
FEMS Microbiol Lett ; 367(23)2020 12 22.
Article En | MEDLINE | ID: mdl-33242092

Nitrogen is a most important nutrient resource for Escherichia coli and other bacteria that harbor the glnKamtB operon, a high-affinity ammonium uptake system highly interconnected with cellular metabolism. Although this system confers an advantage to bacteria when growing under nitrogen-limiting conditions, little is known about the impact of these genes on microbial fitness under nutrient-rich conditions. Here, the genetically tractable E. coli BW25113 strain and its glnKamtB-null mutant (JW0441) were used to analyze the impact of GlnK-AmtB on growth rates and oxidative stress tolerance. Strain JW0441 showed a shorter initial lag phase, higher growth rate, higher citrate synthase activity, higher oxidative stress tolerance and lower expression of serA than strain BW25113 under nutrient-rich conditions, suggesting a fitness cost to increase metabolic plasticity associated with serine metabolism. The overexpression of serA in strain JW0441 resulted in a decreased growth rate and stress tolerance in nutrient-rich conditions similar to that of strain BW25113, suggesting that the negative influence on bacterial fitness imposed by GlnK-AmtB can be traced to the control of serine biosynthesis. Finally, we discuss the potential applications of glnKamtB mutants in bioproduction processes.


Cation Transport Proteins/genetics , Escherichia coli Proteins/genetics , Escherichia coli/genetics , Escherichia coli/metabolism , Nucleotidyltransferases/genetics , PII Nitrogen Regulatory Proteins/genetics , Serine/biosynthesis , Cation Transport Proteins/metabolism , Escherichia coli Proteins/metabolism , Industrial Microbiology , Mutation , Nucleotidyltransferases/metabolism , Operon/genetics , PII Nitrogen Regulatory Proteins/metabolism , Serine/genetics
15.
Nat Commun ; 11(1): 5294, 2020 10 20.
Article En | MEDLINE | ID: mdl-33082347

Non-model bacteria like Pseudomonas putida, Lactococcus lactis and other species have unique and versatile metabolisms, offering unique opportunities for Synthetic Biology (SynBio). However, key genome editing and recombineering tools require optimization and large-scale multiplexing to unlock the full SynBio potential of these bacteria. In addition, the limited availability of a set of characterized, species-specific biological parts hampers the construction of reliable genetic circuitry. Mining of currently available, diverse bacteriophages could complete the SynBio toolbox, as they constitute an unexplored treasure trove for fully adapted metabolic modulators and orthogonally-functioning parts, driven by the longstanding co-evolution between phage and host.


Bacteriophages/genetics , Lactococcus lactis/genetics , Pseudomonas putida/genetics , Synthetic Biology , Bacteriophages/physiology , Gene Editing , Lactococcus lactis/metabolism , Lactococcus lactis/virology , Pseudomonas putida/metabolism , Pseudomonas putida/virology
16.
Microb Biotechnol ; 13(4): 997-1011, 2020 07.
Article En | MEDLINE | ID: mdl-32064751

In contrast to the current paradigm of using microbial mono-cultures in most biotechnological applications, increasing efforts are being directed towards engineering mixed-species consortia to perform functions that are difficult to programme into individual strains. In this work, we developed a synthetic microbial consortium composed of two genetically engineered microbes, a cyanobacterium (Synechococcus elongatus PCC 7942) and a heterotrophic bacterium (Pseudomonas putida EM173). These microbial species specialize in the co-culture: cyanobacteria fix CO2 through photosynthetic metabolism and secrete sufficient carbohydrates to support the growth and active metabolism of P. putida, which has been engineered to consume sucrose and to degrade the environmental pollutant 2,4-dinitrotoluene (2,4-DNT). By encapsulating S. elongatus within a barium-alginate hydrogel, cyanobacterial cells were protected from the toxic effects of 2,4-DNT, enhancing the performance of the co-culture. The synthetic consortium was able to convert 2,4-DNT with light and CO2 as key inputs, and its catalytic performance was stable over time. Furthermore, cycling this synthetic consortium through low nitrogen medium promoted the sucrose-dependent accumulation of polyhydroxyalkanoate, an added-value biopolymer, in the engineered P. putida strain. Altogether, the synthetic consortium displayed the capacity to remediate the industrial pollutant 2,4-DNT while simultaneously synthesizing biopolymers using light and CO2 as the primary inputs.


Pseudomonas putida , Biotransformation , Coculture Techniques , Dinitrobenzenes , Pseudomonas putida/genetics , Synechococcus
17.
J Mol Evol ; 87(9-10): 271-288, 2019 12.
Article En | MEDLINE | ID: mdl-31659374

The presence of most of the atoms involved in the building up of living cells can be explained by their intrinsic physico-chemical properties. Yet, the involvement of the alkali metal potassium cation (K+) is somewhat of a mystery for most scenarios of origins of life, as this element is less abundant than its sodium counterpart in sea water, the original medium bathing the majority of proposed sites as the cradle of life. Potassium is involved in key processes that could as well have been fulfilled by sodium (such as maintenance of an electrochemical potential or homeostatic osmolarity). However, K+ is also required for the setup of a functional translation machinery, as well as for a fairly enigmatic metabolic pathway involving the usually toxic metabolite methylglyoxal. Here we discuss the possibility that potassium has been selected because of some of its idiosyncratic properties or whether it is just the outcome of the accidental place where life was born. Specific physico-chemical properties of the K+ ion would argue in favour of positive selection in the course of life's evolution. By contrast, the latter explanation would require that life originated on potassium-rich environments, possibly continental but yet of unknown location, making K+ presence just a frozen accident of evolution.


Potassium/metabolism , Animals , Humans , Minerals/chemistry , Minerals/metabolism , Models, Molecular , Potassium/chemistry , Sodium/metabolism
18.
Environ Microbiol ; 16(3): 628-42, 2014 Mar.
Article En | MEDLINE | ID: mdl-24341371

Bacteria display considerable cell-to-cell heterogeneity in a number of genetic and physiological traits. Stochastic differences in regulatory patterns (e.g. at the transcriptional level) propagate into the metabolic and physiological status of otherwise isogenic cells, which ultimately results in appearance of sub-populations within the community. As new technologies emerge and because novel single cell strategies are constantly being refined, our knowledge on microbial individuality is in burgeoning and constant expansion. These approaches encompass not only molecular biology tools (e.g. fluorescent-protein based reporters) but also a suite of sophisticated, non-invasive technologies to gain insight into the metabolic state of individual cells. Defining the role of individual heterogeneities is thus instrumental for the population-level understanding of macroscopic processes in both environmental and industrial set-ups. The present article reviews the state-of-the-art methodologies for the investigation of single bacteria at both the genetic and metabolic level, and places the application of currently available tools in the context of microbial ecology and environmental microbiology. As a case example, we examine the stochastic and multi-stable behaviour of the TOL-encoded pathway of Pseudomonas putida mt-2 for the biodegradation of aromatic compounds. Bet-hedging strategies and division of labour are considered as factors pushing forward the evolution of environmental microorganisms.


Environmental Microbiology , Environmental Pollutants/metabolism , Pseudomonas putida/genetics , Pseudomonas putida/metabolism , Biodegradation, Environmental , Genetic Variation , Genotype , Phenotype , Plasmids/genetics
...