Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 72
1.
Nat Commun ; 15(1): 4455, 2024 May 25.
Article En | MEDLINE | ID: mdl-38796479

Lipids are the most abundant but poorly explored components of the human brain. Here, we present a lipidome map of the human brain comprising 75 regions, including 52 neocortical ones. The lipidome composition varies greatly among the brain regions, affecting 93% of the 419 analyzed lipids. These differences reflect the brain's structural characteristics, such as myelin content (345 lipids) and cell type composition (353 lipids), but also functional traits: functional connectivity (76 lipids) and information processing hierarchy (60 lipids). Combining lipid composition and mRNA expression data further enhances functional connectivity association. Biochemically, lipids linked with structural and functional brain features display distinct lipid class distribution, unsaturation extent, and prevalence of omega-3 and omega-6 fatty acid residues. We verified our conclusions by parallel analysis of three adult macaque brains, targeted analysis of 216 lipids, mass spectrometry imaging, and lipidome assessment of sorted murine neurons.


Brain , Lipidomics , Lipids , Humans , Animals , Brain/metabolism , Mice , Adult , Lipids/chemistry , Lipids/analysis , Male , Lipid Metabolism , Macaca , Neurons/metabolism , Female , Fatty Acids, Omega-3/metabolism , Fatty Acids, Omega-6/metabolism , Myelin Sheath/metabolism , Middle Aged
2.
Methods Mol Biol ; 2758: 389-399, 2024.
Article En | MEDLINE | ID: mdl-38549026

The study of urinary peptidome is an important area of research, which concerns the characterization of endogenous peptides, as well as the identification of biomarkers for a wide range of socially significant diseases. First of all, this relates to renal and genitourinary pathologies and/or pathologies associated with proteinuria, such as kidney diseases, bladder, prostate and ovarian cancers, diabetic nephropathy, and pre-eclampsia. Unlike proteins, peptides do not require proteolytic hydrolysis, can be analyzed in their native form and can provide certain information about occurring (patho)physiological processes. Mass spectrometry (MS)-based approaches are the most unbiased and sensitive instruments with high multiplexing capacity and provided most of the current information about endogenous urine peptides. However, despite the large number of urine peptidomic studies, there are certain issues related to the insufficient comparability of their results due to the lack of consistent approaches to their interpretation. Also the development of a custom project-specific protein library for endogenous peptides search and identification is another important point that should be noted in the context of high-throughput peptidomic analysis. Here we propose the custom-specific urinary protein database and the grouping of endogenous urinary peptides with overlapping sequences as useful tools, which can facilitate the acquisition and analysis of LC-MS peptidomic data, as well as the comparison of results of different studies, which should facilitate their more efficient further application.


Liquid Chromatography-Mass Spectrometry , Tandem Mass Spectrometry , Humans , Male , Female , Pregnancy , Tandem Mass Spectrometry/methods , Chromatography, Liquid , Proteins , Peptides/metabolism , Proteomics/methods
3.
Int J Mol Sci ; 24(23)2023 Nov 27.
Article En | MEDLINE | ID: mdl-38069155

Intrauterine growth restriction (IUGR) remains a significant concern in modern obstetrics, linked to high neonatal health problems and even death, as well as childhood disability, affecting adult quality of life. The role of maternal and fetus adaptation during adverse pregnancy is still not completely understood. This study aimed to investigate the disturbance in biological processes associated with isolated IUGR via blood plasma proteomics. The levels of 125 maternal plasma proteins were quantified by liquid chromatography-multiple reaction monitoring mass spectrometry (LC-MRM MS) with corresponding stable isotope-labeled peptide standards (SIS). Thirteen potential markers of IUGR (Gelsolin, Alpha-2-macroglobulin, Apolipoprotein A-IV, Apolipoprotein B-100, Apolipoprotein(a), Adiponectin, Complement C5, Apolipoprotein D, Alpha-1B-glycoprotein, Serum albumin, Fibronectin, Glutathione peroxidase 3, Lipopolysaccharide-binding protein) were found to be inter-connected in a protein-protein network. These proteins are involved in plasma lipoprotein assembly, remodeling, and clearance; lipid metabolism, especially cholesterol and phospholipids; hemostasis, including platelet degranulation; and immune system regulation. Additionally, 18 proteins were specific to a particular type of IUGR (early or late). Distinct patterns in the coagulation and fibrinolysis systems were observed between isolated early- and late-onset IUGR. Our findings highlight the complex interplay of immune and coagulation factors in IUGR and the differences between early- and late-onset IUGR and other placenta-related conditions like PE. Understanding these mechanisms is crucial for developing targeted interventions and improving outcomes for pregnancies affected by IUGR.


Fetal Growth Retardation , Proteomics , Pregnancy , Adult , Infant, Newborn , Female , Humans , Child , Fetal Growth Retardation/metabolism , Quality of Life , Fetus/metabolism , Placenta/metabolism
4.
Biomedicines ; 11(7)2023 Jun 22.
Article En | MEDLINE | ID: mdl-37509426

Metastasis is a serious and often life-threatening condition, representing the leading cause of death among women with breast cancer (BC). Although the current clinical classification of BC is well-established, the addition of minimally invasive laboratory tests based on peripheral blood biomarkers that reflect pathological changes in the body is of utmost importance. In the current study, the serum proteome and lipidome profiles for 50 BC patients with (25) and without (25) metastasis were studied. Targeted proteomic analysis for concertation measurements of 125 proteins in the serum was performed via liquid chromatography-multiple reaction monitoring mass spectrometry (LC-MRM MS) using the BAK 125 kit (MRM Proteomics Inc., Victoria, BC, Canada). Untargeted label-free lipidomic analysis was performed using liquid chromatography coupled to tandem mass-spectrometry (LC-MS/MS), in both positive and negative ion modes. Finally, 87 serum proteins and 295 lipids were quantified and showed a moderate correlation with tumor grade, histological and biological subtypes, and the number of lymph node metastases. Two highly accurate classifiers that enabled distinguishing between metastatic and non-metastatic BC were developed based on proteomic (accuracy 90%) and lipidomic (accuracy 80%) features. The best classifier (91% sensitivity, 89% specificity, AUC = 0.92) for BC metastasis diagnostics was based on logistic regression and the serum levels of 11 proteins: alpha-2-macroglobulin, coagulation factor XII, adiponectin, leucine-rich alpha-2-glycoprotein, alpha-2-HS-glycoprotein, Ig mu chain C region, apolipoprotein C-IV, carbonic anhydrase 1, apolipoprotein A-II, apolipoprotein C-II and alpha-1-acid glycoprotein 1.

5.
Molecules ; 28(10)2023 May 18.
Article En | MEDLINE | ID: mdl-37241899

Bleomycin, which is widely used as an antitumor agent, possesses serious adverse effects such as pulmonary toxicity. Local nanoaerosol deposition for lung cancer treatment is a promising alternative to drug delivery to lung lesions. The aim of this work is to test the hypothesis that bleomycin nanoaerosol can be effectively used to treat multiple lung metastases. To obtain bleomycin nanoaerosol, an aerosol generator based on electrospray of a solution of a nonvolatile substance with gas-phase neutralization of charged aerosol particles was used. Lung metastases in murine Lewis lung carcinoma and B16 melanoma animal models were counted. The effect of inhaled bleomycin nanoparticles on the number and volume of metastases, as well as pulmonary side effects, was investigated. Using a mouse exposure chamber, the dose-dependent effect of inhaled bleomycin on tumor volume was evaluated in comparison with intraperitoneal administration. Bleomycin nanoaerosol reduced the volume of metastases and produced a higher antitumor effect at much lower doses. It has been established that long-term exposure to nanoaerosol with a low dose of bleomycin is capable of suppressing cancer cell growth. The treatment was well tolerated. In the lungs, minor changes were found in the form of focal-diffuse infiltration of the lung parenchyma.


Carcinoma , Lung Neoplasms , Animals , Mice , Bleomycin/toxicity , Respiratory Aerosols and Droplets , Lung , Lung Neoplasms/drug therapy , Lung Neoplasms/pathology , Carcinoma/pathology
6.
Molecules ; 28(8)2023 Apr 09.
Article En | MEDLINE | ID: mdl-37110557

Glomerulopathies with nephrotic syndrome that are resistant to therapy often progress to end-stage chronic kidney disease (CKD) and require timely and accurate diagnosis. Targeted quantitative urine proteome analysis by mass spectrometry (MS) with multiple-reaction monitoring (MRM) is a promising tool for early CKD diagnostics that could replace the invasive biopsy procedure. However, there are few studies regarding the development of highly multiplexed MRM assays for urine proteome analysis, and the two MRM assays for urine proteomics described so far demonstrate very low consistency. Thus, the further development of targeted urine proteome assays for CKD is actual task. Herein, a BAK270 MRM assay previously validated for blood plasma protein analysis was adapted for urine-targeted proteomics. Because proteinuria associated with renal impairment is usually associated with an increased diversity of plasma proteins being present in urine, the use of this panel was appropriate. Another advantage of the BAK270 MRM assay is that it includes 35 potential CKD markers described previously. Targeted LC-MRM MS analysis was performed for 69 urine samples from 46 CKD patients and 23 healthy controls, revealing 138 proteins that were found in ≥2/3 of the samples from at least one of the groups. The results obtained confirm 31 previously proposed CKD markers. Combination of MRM analysis with machine learning for data processing was performed. As a result, a highly accurate classifier was developed (AUC = 0.99) that enables distinguishing between mild and severe glomerulopathies based on the assessment of only three urine proteins (GPX3, PLMN, and A1AT or SHBG).


Kidney Failure, Chronic , Renal Insufficiency, Chronic , Humans , Proteome , Mass Spectrometry/methods , Proteinuria/diagnosis , Blood Proteins , Renal Insufficiency, Chronic/diagnosis , Renal Insufficiency, Chronic/urine , Biomarkers
7.
Int J Mol Sci ; 24(7)2023 Mar 30.
Article En | MEDLINE | ID: mdl-37047497

The molecular mechanisms underlying cardiovascular complications after the SARS-CoV-2 infection remain unknown. The goal of our study was to analyze the features of blood coagulation, platelet aggregation, and plasma proteomics in COVID-19 convalescents with AMI. The study included 66 AMI patients and 58 healthy volunteers. The groups were divided according to the anti-N IgG levels (AMI post-COVID (n = 44), AMI control (n = 22), control post-COVID (n = 31), and control (n = 27)). All participants underwent rotational thromboelastometry, thrombodynamics, impedance aggregometry, and blood plasma proteomics analysis. Both AMI groups of patients demonstrated higher values of clot growth rates, thrombus size and density, as well as the elevated levels of components of the complement system, proteins modifying the state of endothelium, acute-phase and procoagulant proteins. In comparison with AMI control, AMI post-COVID patients demonstrated decreased levels of proteins connected to inflammation and hemostasis (lipopolysaccharide-binding protein, C4b-binding protein alpha-chain, plasma protease C1 inhibitor, fibrinogen beta-chain, vitamin K-dependent protein S), and altered correlations between inflammation and fibrinolysis. A new finding is that AMI post-COVID patients opposite the AMI control group, are characterized by a less noticeable growth of acute-phase proteins and hemostatic markers that could be explained by prolonged immune system alteration after COVID-19.


COVID-19 , Myocardial Infarction , Humans , Proteomics , COVID-19/complications , SARS-CoV-2 , Myocardial Infarction/metabolism , Hemostasis , Inflammation , Plasma/metabolism
8.
Environ Sci Technol ; 57(15): 6238-6247, 2023 04 18.
Article En | MEDLINE | ID: mdl-37018345

Direct comparison of high-resolution mass spectrometry (HRMS) data acquired with different instrumentation or parameters remains problematic as the derived lists of molecular species via HRMS, even for the same sample, appear distinct. This inconsistency is caused by inherent inaccuracies associated with instrumental limitations and sample conditions. Hence, experimental data may not reflect a corresponding sample. We propose a method that classifies HRMS data based on the differences in the number of elements between each pair of molecular formulae within the formulae list to preserve the essence of the given sample. The novel metric, formulae difference chains expected length (FDCEL), allowed for comparing and classifying samples measured by different instruments. We also demonstrate a web application and a prototype for a uniform database for HRMS data serving as a benchmark for future biogeochemical and environmental applications. FDCEL metric was successfully employed for both spectrum quality control and examination of samples of various nature.


Mass Spectrometry , Mass Spectrometry/methods
9.
Eur J Mass Spectrom (Chichester) ; 29(2): 97-101, 2023 Apr.
Article En | MEDLINE | ID: mdl-36922755

The Fourier transform ion cyclotron resonance method holds the lead in mass accuracy and resolving power among all other mass spectrometry methods. The dynamically harmonized cell is largely responsible for the supremacy. This cell has an ideal hyperbolic trapping potential after averaging over fast cyclotron motion. Recently we have introduced an open modification of the cell (especially useful with ultrahigh magnetic fields) and have found the analytical solution for the averaged potential inside it. The voltage on specific "regularizing" electrodes determines how close a potential is to the hyperbolic one. In this article, we find the optimal voltage on these "regularizing" electrodes analytically. This will assist with both further analysis and tuning of the trap after manufacturing.

10.
Int J Mol Sci ; 23(24)2022 Dec 16.
Article En | MEDLINE | ID: mdl-36555683

Chronic liver diseases affect more than 1 billion people worldwide and represent one of the main public health issues. Nonalcoholic fatty liver disease (NAFLD) accounts for the majority of mortal cases, while there is no currently approved therapeutics for its treatment. One of the prospective approaches to NAFLD therapy is to use a mixture of natural compounds. They showed effectiveness in alleviating NAFLD-related conditions including steatosis, fibrosis, etc. However, understanding the mechanism of action of such mixtures is important for their rational application. In this work, we propose a new dereplication workflow for deciphering the mechanism of action of the lignin-derived natural compound mixture. The workflow combines the analysis of molecular components with high-resolution mass spectrometry, selective chemical tagging and deuterium labeling, liver tissue penetration examination, assessment of biological activity in vitro, and computational chemistry tools used to generate putative structural candidates. Molecular docking was used to propose the potential mechanism of action of these structures, which was assessed by a proteomic experiment.


Deep Learning , Non-alcoholic Fatty Liver Disease , Humans , Non-alcoholic Fatty Liver Disease/drug therapy , Lignin/pharmacology , Polyphenols/pharmacology , Polyphenols/therapeutic use , Polyphenols/analysis , Proteomics , Molecular Docking Simulation , Mass Spectrometry
11.
J Am Soc Mass Spectrom ; 33(11): 2032-2037, 2022 Nov 02.
Article En | MEDLINE | ID: mdl-36251283

FT ICR mass spectrometry is the leader in resolving power among all mass spectrometry methods. Introduction of the dynamically harmonized measuring cell─a closed-cylindrical cell with specifically shaped electrodes─helps to reach the resolving power of more than 107 with a magnetic field of about 7 T. From the theory of FT ICR mass spectrometry it follows that the resolving power of this type of instrument depends linearly on the magnetic field under various conditions. However, the results obtained on this type of mass spectrometer with the maximum magnetic field achievable today did not show a proportional increase in resolving power. In one of our previous papers, we assumed that the reason for this was insufficient vacuum inside the cell, since vacuum quality should be at least proportional to the magnetic field, since the mean free run time decreases proportionally to the magnetic field growth. We have presented an open modification of the dynamically harmonized cell that can help improve the cell pumping conditions. However, the electric potential distribution inside this new cell is slightly different from the ideal (harmonic) one, obtained inside the closed version of the cell, and the resolving power may have been limited by this difference.


Cyclotrons , Fourier Analysis , Mass Spectrometry/methods
12.
Int J Mol Sci ; 23(20)2022 Oct 20.
Article En | MEDLINE | ID: mdl-36293475

Primary focal segmental glomerulosclerosis (FSGS), along with minimal change disease (MCD), are diseases with primary podocyte damage that are clinically manifested by the nephrotic syndrome. The pathogenesis of these podocytopathies is still unknown, and therefore, the search for biomarkers of these diseases is ongoing. Our aim was to determine of the proteomic profile of urine from patients with FSGS and MCD. Patients with a confirmed diagnosis of FSGS (n = 30) and MCD (n = 9) were recruited for the study. For a comprehensive assessment of the severity of FSGS a special index was introduced, which was calculated as follows: the first score was assigned depending on the level of eGFR, the second score-depending on the proteinuria level, the third score-resistance to steroid therapy. Patients with the sum of these scores of less than 3 were included in group 1, with 3 or more-in group 2. The urinary proteome was analyzed using liquid chromatography/mass spectrometry. The proteome profiles of patients with severe progressive FSGS from group 2, mild FSGS from group 1 and MCD were compared. Results of the label free analysis were validated using targeted LC-MS based on multiple reaction monitoring (MRM) with stable isotope labelled peptide standards (SIS) available for 47 of the 76 proteins identified as differentiating between at least one pair of groups. Quantitative MRM SIS validation measurements for these 47 proteins revealed 22 proteins with significant differences between at least one of the two group pairs and 14 proteins were validated for both comparisons. In addition, all of the 22 proteins validated by MRM SIS analysis showed the same direction of change as at the discovery stage with label-free LC-MS analysis, i.e., up or down regulation in MCD and FSGS1 against FSGS2. Patients from the FSGS group 2 showed a significantly different profile from both FSGS group 1 and MCD. Among the 47 significantly differentiating proteins, the most significant were apolipoprotein A-IV, hemopexin, vitronectin, gelsolin, components of the complement system (C4b, factors B and I), retinol- and vitamin D-binding proteins. Patients with mild form of FSGS and MCD showed lower levels of Cystatin C, gelsolin and complement factor I.


Glomerulosclerosis, Focal Segmental , Nephrosis, Lipoid , Humans , Nephrosis, Lipoid/diagnosis , Nephrosis, Lipoid/metabolism , Nephrosis, Lipoid/pathology , Glomerulosclerosis, Focal Segmental/metabolism , Cystatin C/metabolism , Proteomics , Gelsolin/metabolism , Proteome/metabolism , Hemopexin/metabolism , Vitronectin/metabolism , Complement Factor I/metabolism , Vitamin A/metabolism , Biomarkers , Steroids , Vitamin D
13.
Biochemistry (Mosc) ; 87(8): 762-776, 2022 Aug.
Article En | MEDLINE | ID: mdl-36171657

Alzheimer's disease (AD) is the most common socially significant neurodegenerative pathology, which currently affects more than 30 million elderly people worldwide. Since the number of patients grows every year and may exceed 115 million by 2050, and due to the lack of effective therapies, early prediction of AD remains a global challenge, solution of which can contribute to the timely appointment of a preventive therapy in order to avoid irreversible changes in the brain. To date, clinical assays for the markers of amyloidosis in cerebrospinal fluid (CSF) have been developed, which, in conjunction with the brain MRI and PET studies, are used either to confirm the diagnosis based on obligate clinical criteria or to predict the risk of AD developing at the stage of mild cognitive impairment (MCI). However, the problem of predicting AD at the asymptomatic stage remains unresolved. In this regard, the search for new protein markers and studies of proteomic changes in CSF and blood plasma are of particular interest and may consequentially identify particular pathways involved in the pathogenesis of AD. Studies of specific proteomic changes in blood plasma deserve special attention and are of increasing interest due to the much less invasive method of sample collection as compared to CSF, which is important when choosing the object for large-scale screening. This review briefly summarizes the current knowledge on proteomic markers of AD and considers the prospects of developing reliable methods for early identification of AD risk factors based on the proteomic profile.


Alzheimer Disease , Cognitive Dysfunction , Aged , Alzheimer Disease/diagnosis , Alzheimer Disease/pathology , Amyloid beta-Peptides , Biomarkers , Brain/diagnostic imaging , Brain/pathology , Cognitive Dysfunction/diagnosis , Humans , Proteomics , tau Proteins
14.
Nanomaterials (Basel) ; 12(16)2022 Aug 20.
Article En | MEDLINE | ID: mdl-36014734

Carbon-encapsulated iron nanoparticles (Fe@C) with a mean diameter of 15 nm have been synthesized using evaporation-condensation flow-levitation method by the direct iron-carbon gas-phase reaction at high temperatures. Further, Fe@C were stabilized with bovine serum albumin (BSA) coating, and their electromagnetic properties were evaluated to test their performance in magnetic hyperthermia therapy (MHT) through a specific absorption rate (SAR). Heat generation was observed at different Fe@C concentrations (1, 2.5, and 5 mg/mL) when applied 331 kHz and 60 kA/m of an alternating magnetic field, resulting in SAR values of 437.64, 129.36, and 50.4 W/g for each concentration, respectively. Having such high SAR values at low concentrations, obtained material is ideal for use in MHT.

15.
Mol Cell Proteomics ; 21(10): 100277, 2022 10.
Article En | MEDLINE | ID: mdl-35931319

The recent surge of coronavirus disease 2019 (COVID-19) hospitalizations severely challenges healthcare systems around the globe and has increased the demand for reliable tests predictive of disease severity and mortality. Using multiplexed targeted mass spectrometry assays on a robust triple quadrupole MS setup which is available in many clinical laboratories, we determined the precise concentrations of hundreds of proteins and metabolites in plasma from hospitalized COVID-19 patients. We observed a clear distinction between COVID-19 patients and controls and, strikingly, a significant difference between survivors and nonsurvivors. With increasing length of hospitalization, the survivors' samples showed a trend toward normal concentrations, indicating a potential sensitive readout of treatment success. Building a machine learning multi-omic model that considers the concentrations of 10 proteins and five metabolites, we could predict patient survival with 92% accuracy (area under the receiver operating characteristic curve: 0.97) on the day of hospitalization. Hence, our standardized assays represent a unique opportunity for the early stratification of hospitalized COVID-19 patients.


COVID-19 , Humans , SARS-CoV-2 , Machine Learning , Hospitalization , ROC Curve , Retrospective Studies
16.
Int J Mol Sci ; 23(14)2022 Jul 18.
Article En | MEDLINE | ID: mdl-35887259

Early recognition of the risk of Alzheimer's disease (AD) onset is a global challenge that requires the development of reliable and affordable screening methods for wide-scale application. Proteomic studies of blood plasma are of particular relevance; however, the currently proposed differentiating markers are poorly consistent. The targeted quantitative multiple reaction monitoring (MRM) assay of the reported candidate biomarkers (CBs) can contribute to the creation of a consistent marker panel. An MRM-MS analysis of 149 nondepleted EDTA-plasma samples (MHRC, Russia) of patients with AD (n = 47), mild cognitive impairment (MCI, n = 36), vascular dementia (n = 8), frontotemporal dementia (n = 15), and an elderly control group (n = 43) was performed using the BAK 125 kit (MRM Proteomics Inc., Canada). Statistical analysis revealed a significant decrease in the levels of afamin, apolipoprotein E, biotinidase, and serum paraoxonase/arylesterase 1 associated with AD. Different training algorithms for machine learning were performed to identify the protein panels and build corresponding classifiers for the AD prognosis. Machine learning revealed 31 proteins that are important for AD differentiation and mostly include reported earlier CBs. The best-performing classifiers reached 80% accuracy, 79.4% sensitivity and 83.6% specificity and were able to assess the risk of developing AD over the next 3 years for patients with MCI. Overall, this study demonstrates the high potential of the MRM approach combined with machine learning to confirm the significance of previously identified CBs and to propose consistent protein marker panels.


Alzheimer Disease , Cognitive Dysfunction , Aged , Alzheimer Disease/diagnosis , Biomarkers , Blood Proteins , Cognitive Dysfunction/diagnosis , Humans , Machine Learning , Mass Spectrometry , Proteomics
17.
Sci Total Environ ; 843: 157009, 2022 Oct 15.
Article En | MEDLINE | ID: mdl-35772561

In land-based recirculating aquaculture systems (RAS), the accumulation of dissolved organic matter (DOM) can have detrimental effects on water quality impacting the system performance, microbial community, and consequently fish health and welfare. Ozone is used in the RAS water treatment process to improve water quality and remove DOM. However, little is known about the molecular composition of DOM in RAS and its transformation when exposed to ozone. In this study, we performed a detailed molecular characterization of DOM in RAS and explored its transformation induced by ozonation of RAS waters. Ultra-high resolution (UHR) Fourier transform ion cyclotron resonance mass spectrometry (FTICR MS) was used to characterize the DOM matrix of RAS waters (pump-sump and tanks) and to evaluate its transformation by ozonation. The analysis of DOM extracted from makeup water and feed samples allowed for the determination of DOM sources in RAS prior to ozonation. The CHO and unsaturated group of compounds were the most abundant class found in water samples. On the contrary, the DOM from feed samples was unique and consisted mainly of CHO, CHON and unsaturated group of compounds. After the ozonation of RAS waters, humic-like and unsaturated compounds [positive oxygen subtracted double bond equivalent per carbon (DBE-O)/C)] were decomposed, particularly the CHO-DOM that contained fewer -CH2- features. Fulvic-like compounds and several hundred saturated compounds [negative (DBE-O)/C)] were formed post ozonation, particularly the CHON and CHONS group of compounds that were associated with fish diets, makeup waters and transformation products from the ozonation of the RAS waters. This study showed that the high accuracy of the ultra-high resolution FTICR MS can be applied to characterize and monitor the changes of DOM at a molecular level in RAS waters. To our knowledge, this is the first study where FTICR MS was incorporated for the characterization of DOM and its sources in RAS.


Ozone , Animals , Aquaculture , Cyclotrons , Dissolved Organic Matter , Fourier Analysis , Mass Spectrometry
18.
Int J Mol Sci ; 23(7)2022 Mar 25.
Article En | MEDLINE | ID: mdl-35408942

Mono- and polysaccharides are an essential part of every biological system. Identifying underivatized carbohydrates using mass spectrometry is still a challenge because carbohydrates have a low capacity for ionization. Normally, the intensities of protonated carbohydrates are relatively low, and in order to increase the corresponding peak height, researchers add Na+, K+, or NH4+to the solution. However, the fragmentation spectra of the corresponding ions are very poor. Based on this, reliably identifying carbohydrates in complex natural and biological objects can benefit frommeasuring additional molecular descriptors, especially those directly connected to the molecular structure. Previously, we reported that the application of the isotope exchange approach (H/D and 16O/18O) to high-resolution mass spectrometry can increase the reliability of identifying drug-like compounds. Carbohydrates possess many -OH and -COOH groups, making it reasonable to expect that the isotope exchange approach would have considerable potential for detecting carbohydrates. Here, we used a collection of standard carbohydrates to investigate the isotope exchange reaction (H/D and 16O/18O) in carbohydrates and estimate its analytical applications.


Carbohydrates , Spectrometry, Mass, Electrospray Ionization , Carbohydrates/chemistry , Deuterium Oxide , Hexoses , Ions , Polysaccharides/chemistry , Reproducibility of Results , Spectrometry, Mass, Electrospray Ionization/methods
19.
ACS Omega ; 7(11): 9710-9719, 2022 Mar 22.
Article En | MEDLINE | ID: mdl-35350354

Dissociation induced by the accumulation of internal energy via collisions of ions with neutral molecules is one of the most important fragmentation techniques in mass spectrometry (MS), and the identification of small singly charged molecules is based mainly on the consideration of the fragmentation spectrum. Many research studies have been dedicated to the creation of databases of experimentally measured tandem mass spectrometry (MS/MS) spectra (such as MzCloud, Metlin, etc.) and developing software for predicting MS/MS fragments in silico from the molecular structure (such as MetFrag, CFM-ID, CSI:FingerID, etc.). However, the fragmentation mechanisms and pathways are still not fully understood. One of the limiting obstacles is that protomers (positive ions protonated at different sites) produce different fragmentation spectra, and these spectra overlap in the case of the presence of different protomers. Here, we are proposing to use a combination of two powerful approaches: computing fragmentation trees that carry information of all consecutive fragmentations and consideration of the MS/MS data of isotopically labeled compounds. We have created PyFragMS-a web tool consisting of a database of annotated MS/MS spectra of isotopically labeled molecules (after H/D and/or 16O/18O exchange) and a collection of instruments for computing fragmentation trees for an arbitrary molecule. Using PyFragMS, we investigated how the site of protonation influences the fragmentation pathway for small molecules. Also, PyFragMS offers capabilities for performing database search when MS/MS data of the isotopically labeled compounds are taken into account.

20.
Mass Spectrom Rev ; : e21775, 2022 Mar 28.
Article En | MEDLINE | ID: mdl-35347731

This review covers the results of the application of mass spectrometric (MS) techniques to study the diversity of beta-amyloid (Aß) peptides in human samples. Since Aß is an important hallmark of Alzheimer's disease (AD), which is a socially significant neurodegenerative disorder of the elderly worldwide, analysis of its endogenous variations is of particular importance for elucidating the pathogenesis of AD, predicting increased risks of the disease onset, and developing effective therapy. MS approaches have no alternative for the study of complex samples, including a wide variety of Aß proteoforms, differing in length and modifications. Approaches based on matrix-assisted laser desorption/ionization time-of-flight and liquid chromatography with electrospray ionization tandem MS are most common in Aß studies. However, Aß forms with isomerized and/or racemized Asp and Ser residues require the use of special methods for separation and extra sensitive and selective methods for detection. Overall, this review summarizes current knowledge of Aß species found in human brain, cerebrospinal fluid, and blood plasma; focuses on application of different MS approaches for Aß studies; and considers the potential of MS techniques for further studies of Aß-peptides.

...