Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 212
1.
NPJ Syst Biol Appl ; 10(1): 54, 2024 May 23.
Article En | MEDLINE | ID: mdl-38783065

Genome-scale metabolic models (GEMs) of microbial communities offer valuable insights into the functional capabilities of their members and facilitate the exploration of microbial interactions. These models are generated using different automated reconstruction tools, each relying on different biochemical databases that may affect the conclusions drawn from the in silico analysis. One way to address this problem is to employ a consensus reconstruction method that combines the outcomes of different reconstruction tools. Here, we conducted a comparative analysis of community models reconstructed from three automated tools, i.e. CarveMe, gapseq, and KBase, alongside a consensus approach, utilizing metagenomics data from two marine bacterial communities. Our analysis revealed that these reconstruction approaches, while based on the same genomes, resulted in GEMs with varying numbers of genes and reactions as well as metabolic functionalities, attributed to the different databases employed. Further, our results indicated that the set of exchanged metabolites was more influenced by the reconstruction approach rather than the specific bacterial community investigated. This observation suggests a potential bias in predicting metabolite interactions using community GEMs. We also showed that consensus models encompassed a larger number of reactions and metabolites while concurrently reducing the presence of dead-end metabolites. Therefore, the usage of consensus models allows making full and unbiased use from aggregating genes from the different reconstructions in assessing the functional potential of microbial communities.


Bacteria , Metagenomics , Models, Biological , Metagenomics/methods , Bacteria/genetics , Bacteria/metabolism , Microbiota/genetics , Microbiota/physiology , Metabolic Networks and Pathways/genetics , Computational Biology/methods , Computer Simulation
2.
Cell Mol Life Sci ; 81(1): 117, 2024 Mar 05.
Article En | MEDLINE | ID: mdl-38443747

Haberlea rhodopensis, a resurrection species, is the only plant known to be able to survive multiple extreme environments, including desiccation, freezing temperatures, and long-term darkness. However, the molecular mechanisms underlying tolerance to these stresses are poorly studied. Here, we present a high-quality genome of Haberlea and found that ~ 23.55% of the 44,306 genes are orphan. Comparative genomics analysis identified 89 significantly expanded gene families, of which 25 were specific to Haberlea. Moreover, we demonstrated that Haberlea preserves its resurrection potential even in prolonged complete darkness. Transcriptome profiling of plants subjected to desiccation, darkness, and low temperatures revealed both common and specific footprints of these stresses, and their combinations. For example, PROTEIN PHOSPHATASE 2C (PP2C) genes were substantially induced in all stress combinations, while PHYTOCHROME INTERACTING FACTOR 1 (PIF1) and GROWTH RESPONSE FACTOR 4 (GRF4) were induced only in darkness. Additionally, 733 genes with unknown functions and three genes encoding transcription factors specific to Haberlea were specifically induced/repressed upon combination of stresses, rendering them attractive targets for future functional studies. The study provides a comprehensive understanding of the genomic architecture and reports details of the mechanisms of multi-stress tolerance of this resurrection species that will aid in developing strategies that allow crops to survive extreme and multiple abiotic stresses.


Cold Temperature , Genomics , Crops, Agricultural , Extreme Environments , Gene Expression Profiling
3.
Metab Eng ; 82: 216-224, 2024 Mar.
Article En | MEDLINE | ID: mdl-38367764

Metabolites, as small molecules, can act not only as substrates to enzymes, but also as effectors of activity of proteins with different functions, thereby affecting various cellular processes. While several experimental techniques have started to catalogue the metabolite-protein interactions (MPIs) present in different cellular contexts, characterizing the functional relevance of MPIs remains a challenging problem. Computational approaches from the constrained-based modeling framework allow for predicting MPIs and integrating their effects in the in silico analysis of metabolic and physiological phenotypes, like cell growth. Here, we provide a classification of all existing constraint-based approaches that predict and integrate MPIs using genome-scale metabolic networks as input. In addition, we benchmark the performance of the approaches to predict MPIs in a comparative study using different features extracted from the model structure and predicted metabolic phenotypes with the state-of-the-art metabolic networks of Escherichia coli and Saccharomyces cerevisiae. Lastly, we provide an outlook for future, feasible directions to expand the consideration of MPIs in constraint-based modeling approaches with wide biotechnological applications.


Metabolic Networks and Pathways , Models, Biological , Metabolic Networks and Pathways/genetics , Phenotype
4.
Biotechnol Bioeng ; 121(3): 915-930, 2024 Mar.
Article En | MEDLINE | ID: mdl-38178617

Genome-scale metabolic models provide a valuable resource to study metabolism and cell physiology. These models are employed with approaches from the constraint-based modeling framework to predict metabolic and physiological phenotypes. The prediction performance of genome-scale metabolic models can be improved by including protein constraints. The resulting protein-constrained models consider data on turnover numbers (kcat ) and facilitate the integration of protein abundances. In this systematic review, we present and discuss the current state-of-the-art regarding the estimation of kinetic parameters used in protein-constrained models. We also highlight how data-driven and constraint-based approaches can aid the estimation of turnover numbers and their usage in improving predictions of cellular phenotypes. Finally, we identify standing challenges in protein-constrained metabolic models and provide a perspective regarding future approaches to improve the predictive performance.


Metabolic Networks and Pathways , Models, Biological , Kinetics
5.
Front Plant Sci ; 14: 1140829, 2023.
Article En | MEDLINE | ID: mdl-38078077

Introduction: Flux phenotypes from different organisms and growth conditions allow better understanding of differential metabolic networks functions. Fluxes of metabolic reactions represent the integrated outcome of transcription, translation, and post-translational modifications, and directly affect growth and fitness. However, fluxes of intracellular metabolic reactions cannot be directly measured, but are estimated via metabolic flux analysis (MFA) that integrates data on isotope labeling patterns of metabolites with metabolic models. While the application of metabolomics technologies in photosynthetic organisms have resulted in unprecedented data from 13CO2-labeling experiments, the bottleneck in flux estimation remains the application of isotopically nonstationary MFA (INST-MFA). INST-MFA entails fitting a (large) system of coupled ordinary differential equations, with metabolite pools and reaction fluxes as parameters. Here, we focus on the Calvin-Benson cycle (CBC) as a key pathway for carbon fixation in photosynthesizing organisms and ask if approaches other than classical INST-MFA can provide reliable estimation of fluxes for reactions comprising this pathway. Methods: First, we show that flux estimation with the labeling patterns of all CBC intermediates can be formulated as a single constrained regression problem, avoiding the need for repeated simulation of time-resolved labeling patterns. Results: We then compare the flux estimates of the simulation-free constrained regression approach with those obtained from the classical INST-MFA based on labeling patterns of metabolites from the microalgae Chlamydomonas reinhardtii, Chlorella sorokiniana and Chlorella ohadii under different growth conditions. Discussion: Our findings indicate that, in data-rich scenarios, simulation-free regression-based approaches provide a suitable alternative for flux estimation from classical INST-MFA since we observe a high qualitative agreement (rs=0.89) to predictions obtained from INCA, a state-of-the-art tool for INST-MFA.

6.
EMBO J ; 42(24): e113595, 2023 Dec 11.
Article En | MEDLINE | ID: mdl-37937667

Plants often experience recurrent stressful events, for example, during heat waves. They can be primed by heat stress (HS) to improve the survival of more severe heat stress conditions. At certain genes, sustained expression is induced for several days beyond the initial heat stress. This transcriptional memory is associated with hyper-methylation of histone H3 lysine 4 (H3K4me3), but it is unclear how this is maintained for extended periods. Here, we determined histone turnover by measuring the chromatin association of HS-induced histone H3.3. Genome-wide histone turnover was not homogenous; in particular, H3.3 was retained longer at heat stress memory genes compared to HS-induced non-memory genes during the memory phase. While low nucleosome turnover retained H3K4 methylation, methylation loss did not affect turnover, suggesting that low nucleosome turnover sustains H3K4 methylation, but not vice versa. Together, our results unveil the modulation of histone turnover as a mechanism to retain environmentally mediated epigenetic modifications.


Histones , Nucleosomes , Histones/genetics , Histones/metabolism , Nucleosomes/genetics , Chromatin/genetics , Heat-Shock Response/genetics , Epigenesis, Genetic
7.
Nat Commun ; 14(1): 7052, 2023 11 03.
Article En | MEDLINE | ID: mdl-37923709

Photorespiration (PR) is the pathway that detoxifies the product of the oxygenation reaction of Rubisco. It has been hypothesized that in dynamic light environments, PR provides a photoprotective function. To test this hypothesis, we characterized plants with varying PR enzyme activities under fluctuating and non-fluctuating light conditions. Contrasting our expectations, growth of mutants with decreased PR enzyme levels was least affected in fluctuating light compared with wild type. Results for growth, photosynthesis and metabolites combined with thermodynamics-based flux analysis revealed two main causal factors for this unanticipated finding: reduced rates of photosynthesis in fluctuating light and complex re-routing of metabolic fluxes. Only in non-fluctuating light, mutants lacking the glutamate:glyoxylate aminotransferase 1 re-routed glycolate processing to the chloroplast, resulting in photooxidative damage through H2O2 production. Our results reveal that dynamic light environments buffer plant growth and metabolism against photorespiratory perturbations.


Hydrogen Peroxide , Photosynthesis , Hydrogen Peroxide/metabolism , Plants/metabolism , Chloroplasts/metabolism , Plant Development , Light , Carbon Dioxide/metabolism
8.
Metab Eng ; 80: 184-192, 2023 Nov.
Article En | MEDLINE | ID: mdl-37802292

Quantification of how different environmental cues affect protein allocation can provide important insights for understanding cell physiology. While absolute quantification of proteins can be obtained by resource-intensive mass-spectrometry-based technologies, prediction of protein abundances offers another way to obtain insights into protein allocation. Here we present CAMEL, a framework that couples constraint-based modelling with machine learning to predict protein abundance for any environmental condition. This is achieved by building machine learning models that leverage static features, derived from protein sequences, and condition-dependent features predicted from protein-constrained metabolic models. Our findings demonstrate that CAMEL results in excellent prediction of protein allocation in E. coli (average Pearson correlation of at least 0.9), and moderate performance in S. cerevisiae (average Pearson correlation of at least 0.5). Therefore, CAMEL outperformed contending approaches without using molecular read-outs from unseen conditions and provides a valuable tool for using protein allocation in biotechnological applications.


Escherichia coli , Saccharomyces cerevisiae , Animals , Escherichia coli/genetics , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Camelus , Proteins/metabolism , Machine Learning
9.
PLoS Comput Biol ; 19(10): e1011549, 2023 Oct.
Article En | MEDLINE | ID: mdl-37856550

Protein allocation determines the activity of cellular pathways and affects growth across all organisms. Therefore, different experimental and machine learning approaches have been developed to quantify and predict protein abundance and how they are allocated to different cellular functions, respectively. Yet, despite advances in protein quantification, it remains challenging to predict condition-specific allocation of enzymes in metabolic networks. Here, using protein-constrained metabolic models, we propose a family of constrained-based approaches, termed PARROT, to predict how much of each enzyme is used based on the principle of minimizing the difference between a reference and an alternative growth condition. To this end, PARROT variants model the minimization of enzyme reallocation using four different (combinations of) distance functions. We demonstrate that the PARROT variant that minimizes the Manhattan distance between the enzyme allocation of a reference and an alternative condition outperforms existing approaches based on the parsimonious distribution of fluxes or enzymes for both Escherichia coli and Saccharomyces cerevisiae. Further, we show that the combined minimization of flux and enzyme allocation adjustment leads to inconsistent predictions. Together, our findings indicate that minimization of protein allocation rather than flux redistribution is a governing principle determining steady-state pathway activity for microorganism grown in alternative growth conditions.


Parrots , Animals , Metabolic Networks and Pathways , Escherichia coli/genetics , Escherichia coli/metabolism , Cell Physiological Phenomena , Saccharomyces cerevisiae/metabolism , Models, Biological
10.
Sci Rep ; 13(1): 14589, 2023 09 04.
Article En | MEDLINE | ID: mdl-37666891

The deficiency of a (bio)chemical reaction network can be conceptually interpreted as a measure of its ability to support exotic dynamical behavior and/or multistationarity. The classical definition of deficiency relates to the capacity of a network to permit variations of the complex formation rate vector at steady state, irrespective of the network kinetics. However, the deficiency is by definition completely insensitive to the fine details of the directionality of reactions as well as bounds on reaction fluxes. While the classical definition of deficiency can be readily applied in the analysis of unconstrained, weakly reversible networks, it only provides an upper bound in the cases where relevant constraints on reaction fluxes are imposed. Here we propose the concept of effective deficiency, which provides a more accurate assessment of the network's capacity to permit steady state variations at the complex level for constrained networks of any reversibility patterns. The effective deficiency relies on the concept of nonstoichiometric balanced complexes, which we have already shown to be present in real-world biochemical networks operating under flux constraints. Our results demonstrate that the effective deficiency of real-world biochemical networks is smaller than the classical deficiency, indicating the effects of reaction directionality and flux bounds on the variation of the complex formation rate vector at steady state.


Physics , Kinetics
11.
PLoS Comput Biol ; 19(9): e1011489, 2023 09.
Article En | MEDLINE | ID: mdl-37721963

Intracellular fluxes represent a joint outcome of cellular transcription and translation and reflect the availability and usage of nutrients from the environment. While approaches from the constraint-based metabolic framework can accurately predict cellular phenotypes, such as growth and exchange rates with the environment, accurate prediction of intracellular fluxes remains a pressing problem. Parsimonious flux balance analysis (pFBA) has become an approach of choice to predict intracellular fluxes by employing the principle of efficient usage of protein resources. Nevertheless, comparative analyses of intracellular flux predictions from pFBA against fluxes estimated from labeling experiments remain scarce. Here, we posited that steady-state flux distributions derived from the principle of maximizing multi-reaction dependencies are of improved accuracy and precision than those resulting from pFBA. To this end, we designed a constraint-based approach, termed complex-balanced FBA (cbFBA), to predict steady-state flux distributions that support the given specific growth rate and exchange fluxes. We showed that the steady-state flux distributions resulting from cbFBA in comparison to pFBA show better agreement with experimentally measured fluxes from 17 Escherichia coli strains and are more precise, due to the smaller space of alternative solutions. We also showed that the same principle holds in eukaryotes by comparing the predictions of pFBA and cbFBA against experimentally derived steady-state flux distributions from 26 knock-out mutants of Saccharomyces cerevisiae. Furthermore, our results showed that intracellular fluxes predicted by cbFBA provide better support for the principle of minimizing metabolic adjustment between mutants and wild types. Together, our findings point that other principles that consider the dynamics and coordination of steady states may govern the distribution of intracellular fluxes.


Models, Biological , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genetics , Metabolic Networks and Pathways
12.
Nat Commun ; 14(1): 4897, 2023 08 14.
Article En | MEDLINE | ID: mdl-37580345

Lipids play fundamental roles in regulating agronomically important traits. Advances in plant lipid metabolism have until recently largely been based on reductionist approaches, although modulation of its components can have system-wide effects. However, existing models of plant lipid metabolism provide lumped representations, hindering detailed study of component modulation. Here, we present the Plant Lipid Module (PLM) which provides a mechanistic description of lipid metabolism in the Arabidopsis thaliana rosette. We demonstrate that the PLM can be readily integrated in models of A. thaliana Col-0 metabolism, yielding accurate predictions (83%) of single lethal knock-outs and 75% concordance between measured transcript and predicted flux changes under extended darkness. Genome-wide associations with fluxes obtained by integrating the PLM in diel condition- and accession-specific models identify up to 65 candidate genes modulating A. thaliana lipid metabolism. Using mutant lines, we validate up to 40% of the candidates, paving the way for identification of metabolic gene function based on models capturing natural variability in metabolism.


Arabidopsis Proteins , Arabidopsis , Arabidopsis/genetics , Arabidopsis/metabolism , Lipid Metabolism/genetics , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Phenotype
13.
Nat Commun ; 14(1): 4781, 2023 08 08.
Article En | MEDLINE | ID: mdl-37553325

Metabolic engineering of microalgae offers a promising solution for sustainable biofuel production, and rational design of engineering strategies can be improved by employing metabolic models that integrate enzyme turnover numbers. However, the coverage of turnover numbers for Chlamydomonas reinhardtii, a model eukaryotic microalga accessible to metabolic engineering, is 17-fold smaller compared to the heterotrophic cell factory Saccharomyces cerevisiae. Here we generate quantitative protein abundance data of Chlamydomonas covering 2337 to 3708 proteins in various growth conditions to estimate in vivo maximum apparent turnover numbers. Using constrained-based modeling we provide proxies for in vivo turnover numbers of 568 reactions, representing a 10-fold increase over the in vitro data for Chlamydomonas. Integration of the in vivo estimates instead of in vitro values in a metabolic model of Chlamydomonas improved the accuracy of enzyme usage predictions. Our results help in extending the knowledge on uncharacterized enzymes and improve biotechnological applications of Chlamydomonas.


Chlamydomonas reinhardtii , Chlamydomonas reinhardtii/metabolism , Proteomics , Genome , Biotechnology/methods , Proteins/metabolism , Saccharomyces cerevisiae/genetics
14.
Metab Eng ; 79: 97-107, 2023 09.
Article En | MEDLINE | ID: mdl-37422133

Dynamic metabolic engineering is a strategy to switch key metabolic pathways in microbial cell factories from biomass generation to accumulation of target products. Here, we demonstrate that optogenetic intervention in the cell cycle of budding yeast can be used to increase production of valuable chemicals, such as the terpenoid ß-carotene or the nucleoside analog cordycepin. We achieved optogenetic cell-cycle arrest in the G2/M phase by controlling activity of the ubiquitin-proteasome system hub Cdc48. To analyze the metabolic capacities in the cell cycle arrested yeast strain, we studied their proteomes by timsTOF mass spectrometry. This revealed widespread, but highly distinct abundance changes of metabolic key enzymes. Integration of the proteomics data in protein-constrained metabolic models demonstrated modulation of fluxes directly associated with terpenoid production as well as metabolic subsystems involved in protein biosynthesis, cell wall synthesis, and cofactor biosynthesis. These results demonstrate that optogenetically triggered cell cycle intervention is an option to increase the yields of compounds synthesized in a cellular factory by reallocation of metabolic resources.


Saccharomyces cerevisiae Proteins , Saccharomyces cerevisiae , Metabolic Engineering , Optogenetics , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism , Terpenes/metabolism
15.
PLoS Comput Biol ; 19(7): e1010832, 2023 07.
Article En | MEDLINE | ID: mdl-37523414

Despite extensive research efforts, reconstruction of gene regulatory networks (GRNs) from transcriptomics data remains a pressing challenge in systems biology. While non-linear approaches for reconstruction of GRNs show improved performance over simpler alternatives, we do not yet have understanding if joint modelling of multiple target genes may improve performance, even under linearity assumptions. To address this problem, we propose two novel approaches that cast the GRN reconstruction problem as a blend between regularized multivariate regression and graphical models that combine the L2,1-norm with classical regularization techniques. We used data and networks from the DREAM5 challenge to show that the proposed models provide consistently good performance in comparison to contenders whose performance varies with data sets from simulation and experiments from model unicellular organisms Escherichia coli and Saccharomyces cerevisiae. Since the models' formulation facilitates the prediction of master regulators, we also used the resulting findings to identify master regulators over all data sets as well as their plasticity across different environments. Our results demonstrate that the identified master regulators are in line with experimental evidence from the model bacterium E. coli. Together, our study demonstrates that simultaneous modelling of several target genes results in improved inference of GRNs and can be used as an alternative in different applications.


Algorithms , Escherichia coli , Escherichia coli/genetics , Gene Regulatory Networks/genetics , Systems Biology/methods , Gene Expression Profiling , Saccharomyces cerevisiae/genetics
16.
Bioinform Adv ; 3(1): vbad098, 2023.
Article En | MEDLINE | ID: mdl-37521309

Motivation: Metabolite-protein interactions play an important role in regulating protein functions and metabolism. Yet, predictions of metabolite-protein interactions using genome-scale metabolic networks are lacking. Here, we fill this gap by presenting a computational framework, termed SARTRE, that employs features corresponding to shadow prices determined in the context of flux variability analysis to predict metabolite-protein interactions using supervised machine learning. Results: By using gold standards for metabolite-protein interactomes and well-curated genome-scale metabolic models of Escherichia coli and Saccharomyces cerevisiae, we found that the implementation of SARTRE with random forest classifiers accurately predicts metabolite-protein interactions, supported by an average area under the receiver operating curve of 0.86 and 0.85, respectively. Ranking of features based on their importance for classification demonstrated the key role of shadow prices in predicting metabolite-protein interactions. The quality of predictions is further supported by the excellent agreement of the organism-specific classifiers on unseen interactions shared between the two model organisms. Further, predictions from SARTRE are highly competitive against those obtained from a recent deep-learning approach relying on a variety of protein and metabolite features. Together, these findings show that features extracted from constraint-based analyses of metabolic networks pave the way for understanding the functional roles of the interactions between proteins and small molecules. Availability and implementation: https://github.com/fayazsoleymani/SARTRE.

17.
New Phytol ; 240(1): 426-438, 2023 10.
Article En | MEDLINE | ID: mdl-37507350

Plants can rapidly mitigate the effects of suboptimal growth environments by phenotypic plasticity of fitness-traits. While genetic variation for phenotypic plasticity offers the means for breeding climate-resilient crop lines, accurate genomic prediction models for plasticity of fitness-related traits are still lacking. Here, we employed condition- and accession-specific metabolic models for 67 Arabidopsis thaliana accessions to dissect and predict plasticity of rosette growth to changes in nitrogen availability. We showed that specific reactions in photorespiration, linking carbon and nitrogen metabolism, as well as key pathways of central carbon metabolism exhibited substantial genetic variation for flux plasticity. We also demonstrated that, in comparison with a genomic prediction model for fresh weight (FW), genomic prediction of growth plasticity improves the predictability of FW under low nitrogen by 58.9% and by additional 15.4% when further integrating data on plasticity of metabolic fluxes. Therefore, the combination of metabolic and statistical modeling provides a stepping stone in understanding the molecular mechanisms and improving the predictability of plasticity for fitness-related traits.


Arabidopsis , Arabidopsis/metabolism , Plant Breeding , Phenotype , Nitrogen/metabolism , Carbon/metabolism
18.
Front Plant Sci ; 14: 1178239, 2023.
Article En | MEDLINE | ID: mdl-37346134

Quantification of reaction fluxes of metabolic networks can help us understand how the integration of different metabolic pathways determine cellular functions. Yet, intracellular fluxes cannot be measured directly but are estimated with metabolic flux analysis (MFA) that relies on the patterns of isotope labeling of metabolites in the network. For metabolic systems, typical for plants, where all potentially labeled atoms effectively have only one source atom pool, only isotopically nonstationary MFA can provide information about intracellular fluxes. There are several global approaches that implement MFA for an entire metabolic network and estimate, at once, a steady-state flux distribution for all reactions with identifiable fluxes in the network. In contrast, local approaches deal with estimation of fluxes for a subset of reactions, with smaller data demand for flux estimation. Here we present a systematic comparative review and benchmarking of the existing local approaches for isotopically nonstationary MFA. The comparison is conducted with respect to the required data and underlying computational problems solved on a synthetic network example. Furthermore, we benchmark the performance of these approaches in estimating fluxes for a subset of reactions using data obtained from the simulation of nitrogen fluxes in the Arabidopsis thaliana core metabolism. The findings pinpoint practical aspects that need to be considered when applying local approaches for flux estimation in large-scale plant metabolic networks.

19.
Biotechnol Adv ; 67: 108203, 2023 10.
Article En | MEDLINE | ID: mdl-37348662

Temperature affects cellular processes at different spatiotemporal scales, and identifying the genetic and molecular mechanisms underlying temperature responses paves the way to develop approaches for mitigating the effects of future climate scenarios. A systems view of the effects of temperature on cellular physiology can be obtained by focusing on metabolism since: (i) its functions depend on transcription and translation and (ii) its outcomes support organisms' development, growth, and reproduction. Here we provide a systematic review of modelling efforts directed at investigating temperature effects on properties of single biochemical reactions, system-level traits, metabolic subsystems, and whole-cell metabolism across different prokaryotes and eukaryotes. We compare and contrast computational approaches and theories that facilitate modelling of temperature effects on key properties of enzymes and their consideration in constraint-based as well as kinetic models of metabolism. In addition, we provide a summary of insights from computational approaches, facilitating integration of omics data from temperature-modulated experiments with models of metabolic networks, and review the resulting biotechnological applications. Lastly, we provide a perspective on how different types of metabolic modelling can profit from developments in machine learning and models of different cellular layers to improve model-driven insights into the effects of temperature relevant for biotechnological applications.


Metabolic Networks and Pathways , Models, Biological , Temperature , Metabolic Networks and Pathways/genetics , Phenotype
20.
Nat Commun ; 14(1): 2687, 2023 05 10.
Article En | MEDLINE | ID: mdl-37164999

Availability of light and CO2, substrates of microalgae photosynthesis, is frequently far from optimal. Microalgae activate photoprotection under strong light, to prevent oxidative damage, and the CO2 Concentrating Mechanism (CCM) under low CO2, to raise intracellular CO2 levels. The two processes are interconnected; yet, the underlying transcriptional regulators remain largely unknown. Employing a large transcriptomic data compendium of Chlamydomonas reinhardtii's responses to different light and carbon supply, we reconstruct a consensus genome-scale gene regulatory network from complementary inference approaches and use it to elucidate transcriptional regulators of photoprotection. We show that the CCM regulator LCR1 also controls photoprotection, and that QER7, a Squamosa Binding Protein, suppresses photoprotection- and CCM-gene expression under the control of the blue light photoreceptor Phototropin. By demonstrating the existence of regulatory hubs that channel light- and CO2-mediated signals into a common response, our study provides an accessible resource to dissect gene expression regulation in this microalga.


Chlamydomonas reinhardtii , Chlamydomonas , Chlamydomonas reinhardtii/metabolism , Carbon Dioxide/metabolism , Photosynthesis/genetics , Gene Expression Regulation , Chlamydomonas/metabolism , Carbon/metabolism
...