Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 18 de 18
1.
Toxics ; 12(5)2024 May 10.
Article En | MEDLINE | ID: mdl-38787129

Zirconium is recognized as one of the main impurities of the rare earth element scandium during purification. It presents significant challenges due to its similar chemical properties, making separating it difficult. This study used trialkyl phosphine oxide (TRPO) as a functional ligand, and the effects of carrier type and acidity on adsorption performance were first investigated. Among these, the novel extraction resin SiO2-P as a carrier for TRPO demonstrated more prominent separation performance in 0.2 M H2SO4 and 5 M HCl solutions. The kinetic and isotherm data were consistent with the pseudo-secondary kinetics and Langmuir model, respectively, and the adsorption process could be regarded as homogeneous monolayer adsorption subject to the dual effects of chemisorption and internal diffusion. In addition, thermodynamic analysis showed that the adsorption process of zirconium under the experimental conditions was a spontaneous endothermic process. Combined with the results of SEM-EDS, FT-IR, and XPS analyses, scandium and zirconium were successfully adsorbed by the resin and uniformly distributed on its surface, and the greater affinity of the P=O groups on the resin for zirconium was the critical factor contributing to the separation of scandium and zirconium. Finally, scandium and zirconium in sulfuric acid and hydrochloric acid media were extracted and separated by column experiments, and the purity of scandium could reach 99.8% and 99.99%, respectively.

2.
Toxics ; 12(3)2024 Feb 27.
Article En | MEDLINE | ID: mdl-38535914

Ruthenium is required to separate from high-level liquid waste (HLLW) because Ru is a valuable resource and is negatively influential on the vitrification process of HLLW. However, the separation of Ru is very challenging due to its complicated complexation properties. In this study, the adsorption and desorption characteristics of ruthenium on a synthesized SiPyR-N3 (weak-base anion exchange resin with pyridine functional groups) composite were investigated in nitric acid and nitrite-nitric acid systems, respectively, and the adsorption mechanism was explored. The experimental results showed that SiPyR-N3 has a significantly better adsorption effect on Ru in the nitrite-nitric acid system than in the nitric acid system, with an increase in the adsorption capacity of approximately three times. The maximum adsorption capacity of Ru is 45.6 mg/g in the nitrite-nitric acid system. The SiPyR-N3 possesses good adsorption selectivity (SFRu/other metal ions is around 100) in 0.1 M NO2--0.1 M HNO3 solution. The adsorption processes of Ru in the two different systems are fitted with the pseudo-second-order kinetic model and Langmuir model for uptake kinetics and adsorption isotherms, respectively. The results obtained from the FT-IR, XPS, and UV absorption spectrometry indicate that NO2- was involved in the adsorption process either as a complexing species with the metal ions or as free NO2- from the solution. A 0.1 M HNO3 + 1 M thiourea mixed solution shows effective desorption performance, and the desorption efficiency can reach 92% at 328 K.

3.
J Hazard Mater ; 467: 133741, 2024 Apr 05.
Article En | MEDLINE | ID: mdl-38341887

Radioactive strontium (90Sr) is considered as one of the most dangerous radionuclides due to its high biochemical toxicity. For the efficient and selective separation of Sr from acidic environments, a novel functional adsorbent CEPA@SBA-15-APTES was prepared in this work through the phosphorylation of amino-modified mesoporous silica with organic content of approximately 20 wt%. CEPA@SBA-15-APTES was characterized by TEM, SEM, EDS, TG-DSC, BET, FTIR, and XPS techniques, revealing its characteristics of an ordered hexagonal lattice-like structure and rich functional groups. The experimental results demonstrated that the adsorbent exhibited good adsorption capacity for Sr over a wide acidity range (i.e., from 10-10 M to 4 M HNO3). The adsorption equilibriums of Sr by CEPA@SBA-15-APTES in 10-6 M and 3 M HNO3 solutions were reached within 30 and 5 min, respectively, and the adsorption capacities at 318 K were 112.6 and 71.8 mg/g, respectively. Furthermore, by combining the experimental and characterization results, we found that the adsorption mechanism consisted of ion exchange between Sr(II) and H+ (in P-OH) in the 10-6 M HNO3 solution and coordination between the Sr(II) and oxygen-containing (CO and P = O) functional groups in the 3 M HNO3 solution.

4.
J Environ Manage ; 353: 120283, 2024 Feb 27.
Article En | MEDLINE | ID: mdl-38330842

The recovery of rare earth elements (REEs) including neodymium (Nd) and dysprosium (Dy) from NdFeB permanent magnets has become one of the main ways to solve the increased demand for rare earth. Herein, n-dodecyl phosphate (DPPA) was used for the first time as the adsorption functional group donor, sodium alginate as the substrate, and calcium chloride solution as the reactive solvent, a hybrid hydrogel adsorbent DPPA/CaALG was synthesized by sol-gel method for application in the adsorption and separation of Nd and Dy from the Co-Nd-Dy ternary system. SEM-EDS, and N2 adsorption-desorption analysis showed the successful preparation of DDPA/CaALG with mesoporous structure. Batch experiments showed the superiority of the hybrid hydrogel for the good selective adsorption of Nd and Dy, such as large adsorption capacity (Nd: 162.5 mg/g, Dy: 183.5 mg/g), and no adsorption for Co. FT-IR, XPS showed that PO and P-O groups are involved in the adsorption process of Nd and Dy as electron acceptors, where the ion exchange of P-OH is dominant. Furthermore, the chemical properties of ligands and complexes were analyzed by Density Functional Theory (DFT) calculations and revealed their adsorption behaviors as well as the competition between different metal ions.


Metals, Rare Earth , Neodymium , Dysprosium , Hydrogels , Adsorption , Alginates , Spectroscopy, Fourier Transform Infrared , Phosphates
5.
Dalton Trans ; 53(4): 1586-1598, 2024 Jan 23.
Article En | MEDLINE | ID: mdl-38165017

Accurate separation and efficient recovery of platinum group metals (PGMs, mainly Ru, Rh and Pd) from high level liquid waste (HLLW) is a good choice for clean production and sustainable development of nuclear energy. Herein a novel SDB polymer modified silica-based amine-functionalized composite (dNbpy/SiO2-P) was synthesized for the separation and recovery of PGMs. Laser particle size analysis and BET results clarified the regular spherical and highly interconnected mesoporous structure of dNbpy/SiO2-P which is critical for the separation of PGMs. The removal percent of PGMs were over 99% on the optimized conditions. In addition, dNbpy/SiO2-P showed excellent selectivity (SFPd/M > 3805, SFRu/M > 1705, SFRh/M > 336) and repeatability (≥5). Interestingly, based on the different adsorption and desorption kinetics of PGMs, a double-column strategy is designed to solve the challenge of separating and recovering PGMs from HLLW. The enrichment factors of Pd(II), Ru(III) and Rh(III) reached 36.7, 8.2, and 1.2. The adsorption of PGMs was coordination mechanism and required the involvement of NO3- to maintain charge balance. The specific distribution of elements within the adsorbents and the changes in valence state were analyzed using depth-profiling XPS. Both depth-profiling XPS results and slope analysis revealed that the complex of dNbpy and PGMs is a 1 : 1 coordination structure. Overall, this work fills the gap that PGMs cannot be effectively separated and enriched from HLLW.

6.
Chemosphere ; 350: 141184, 2024 Feb.
Article En | MEDLINE | ID: mdl-38215834

Efficient recognition, separation and recovery of palladium from high-level liquid waste (HLLW) not only helps the safe, green and environmentally friendly disposal of nuclear waste, but also is an essential important supplement to overcome the growing shortage of natural palladium resources. Herein, a novel silica-based functional adsorbent named 2AT-SiAaC was prepared by a two-step method, i.e., grafting of 2-aminothiazole (2AT) via the amidated reaction after in-situ polymerization of acrylic monomers on porous silica. SEM, EDS, TG-DSC, BET and PXRD all proved the successful preparation of 2AT-SiAaC, and it exhibited ultrahigh adsorption selectivity for Pd(II) (Kd (distribution coefficient) ≥ 10,344.2 mL/g, SFPd/M (separation factor) ≥ 613.7), fast adsorption kinetics with short equilibrium time (t ≤ 1 h) and good adsorption capacity (Q ≥ 62.1 mg Pd/g). The dynamic column experiments shows that 2AT-SiAaC achieved efficiently separation of Pd(II) from simulated HLLW, and the enrichment coefficients (C/C0) of Pd(II) was as high as about 14 with the recovery rate nearly 99.9% and basically kept the same performance in three adsorption-desorption column cycle experiments. The adsorption mechanism was analyzed by FT-IR, XPS and DFT calculations, and the ultrahigh selectivity of 2AT-SiAaC was attributed to the preferred affinity of the soft N-donor atoms in 2AT for Pd(II). NO3- ions participated in the adsorption reaction to keep charge balance, and the frontier orbital electron density distribution diagram shows the charge transfer in the process of material preparation and adsorption. To sum up, 2AT-SiAaC adsorbent provided a new insight for precise recognition and efficient separation of Pd(II) from HLLW.


Palladium , Thiazoles , Water Pollutants, Chemical , Palladium/analysis , Silicon Dioxide , Spectroscopy, Fourier Transform Infrared , Adsorption , Kinetics
7.
Small ; : e2307304, 2023 Dec 06.
Article En | MEDLINE | ID: mdl-38054780

The construction of heterojunction photocatalysts is an auspicious approach for enhancing the photocatalytic performance of wastewater treatment. Here, a novel CeO2 /Bi2 WO6 heterojunction is synthesized using an in situ liquid-phase method. The optimal 15% CeO2 /Bi2 WO6 (CBW-15) is found to have the highest photocatalytic activity, achieving a degradation efficiency of 99.21% for tetracycline (TC), 98.43% for Rhodamine B (RhB), and 94.03% for methylene blue (MB). The TC removal rate remained at 95.38% even after five cycles. Through active species capture experiments, •O2 - , h+ , and •OH are the main active substances for TC, RhB, and MB, respectively. The possible degradation pathways for TC are analyzed using liquid chromatography-mass spectrometry (LC-MS). The photoinduced charge transfer and possible degradation mechanisms are proposed through experimentation and density functional theory (DFT) calculations. Toxicity assessment experiments show a significant reduction in toxicity during the TC degradation process. This study uncovers the mechanism of photocatalytic degradation in CeO2 /Bi2 WO6 and provides new insights into toxicity assessment.

8.
Water Res ; 247: 120819, 2023 Dec 01.
Article En | MEDLINE | ID: mdl-37931357

To address the imperative need for efficient removal of uranium-containing wastewater and mitigate radioactive contamination risks associated with nuclear energy, the development of materials with high removal efficiency and facile separation is crucial. This study designed and synthesised MnO2@chitosan (CTS) composite aerogel beads by in-situ growing δ-MnO2 on porous CTS aerogel beads. This approach not only mitigates the agglomeration of MnO2 nanospheres but also significantly enhances the porous structure and surface area of MnO2@CTS. These cost-effective and eco-friendly millimeter-scale spherical aerogels exhibited convenient separation properties after adsorption. These characteristics help mitigate the risk of equipment seam blockage and secondary pollution that are often associated with powdered adsorbents. Additionally, MnO2@CTS exhibited remarkable mechanical strength (stress approximately 0.55 MPa at 60 % strain), enabling rapid separation and easy regeneration while maintaining high adsorption performance even after five cycles. Significantly, MnO2@CTS exhibited a maximum adsorption capacity of 410.7 mg/g at pH 6 and 298 K, surpassing reported values for most CTS/MnO2-based adsorbents. The chemisorption process of U(VI) on MnO2@CTS followed the pseudo-second-order kinetic and Dubinin-Radushkevish models. X-ray photoelectron spectroscopy analysis further confirmed the reduction of U(VI) to U(V/IV). These findings highlight the substantial potential of MnO2@CTS aerogel beads for U(VI) removal from aqueous solutions, positioning them as a promising solution for addressing U(VI) contamination in wastewater.


Chitosan , Uranium , Wastewater , Uranium/analysis , Chitosan/chemistry , Manganese Compounds , Oxides , Adsorption , Kinetics , Hydrogen-Ion Concentration
9.
Gels ; 9(2)2023 Feb 11.
Article En | MEDLINE | ID: mdl-36826322

Although Cs(I) and Sr(II) are not strategic and hazardous metal ions, their recovery from aqueous solutions is of great concern for the nuclear industry. The objective of this work consists of designing a new sorbent for the simultaneous recovery of these metals with selectivity against other metals. The strategy is based on the functionalization of algal/polyethyleneimine hydrogel beads by phosphonation. The materials are characterized by textural, thermo-degradation, FTIR, elemental, titration, and SEM-EDX analyses to confirm the chemical modification. To evaluate the validity of this modification, the sorption of Cs(I) and Sr(II) is compared with pristine support under different operating conditions: the pH effect, kinetics, and isotherms are investigated in mono-component and binary solutions, before investigating the selectivity (against competitor metals) and the possibility to reuse the sorbent. The functionalized sorbent shows a preference for Sr(II), enhanced sorption capacities, a higher stability at recycling, and greater selectivity against alkali, alkaline-earth, and heavy metal ions. Finally, the sorption properties are compared for Cs(I) and Sr(II) removal in a complex solution (seawater sample). The combination of these results confirms the superiority of phosphonated sorbent over pristine support with promising performances to be further evaluated with effluents containing radionuclides.

10.
J Colloid Interface Sci ; 629(Pt B): 97-110, 2023 Jan.
Article En | MEDLINE | ID: mdl-36152584

The synergistic effect between transition metal active centers and the generation of multiple removal pathways has a significant impact on the catalytic activation efficiency of peroxymonosulfate. In this work, a kind of composite catalyst was prepared by growing VCo-metal-organic frameworks (VCo-MOF) in-situ on the surface of Ti3C2Tx by a solvothermal method. The morphology and structure are characterized by Transmission Electron Microscope (TEM), Energy Dispersion Spectrum (EDS), Atomic Force Microscope (AFM), etc. Response surface methodology was used to optimize the experimental conditions. Only 5 mg catalyst can be used to effectively activate PMS and remove 96.14 % ciprofloxacin (CIP, 20 mg/L) within 30 min. The removal effect of catalyst on CIP in different actual water environment was explored. In addition, the fluorescence spectrum test also verified the effective removal of ciprofloxacin. V-Co-Ti ternary system provides a wealth of active sites for CIP removal. Cyclic voltammetry (CV) and lear sweep voltammetry (LSV) tests showed the existence of the electron transfer pathway. The results of density functional theory (DFT) calculation show that VCo-MOF@Ti3C2Tx has excellent adsorption and activation ability for PMS. At the same time, the hydrophilicity of the catalyst makes PMS more inclined to react with water molecules, which promotes the formation of a unique superoxide radical path.

11.
Toxics ; 10(12)2022 Nov 30.
Article En | MEDLINE | ID: mdl-36548574

To separate the long-lived minor actinides (MA = Am, Cm) from high-level liquid waste (HLLW), we have been studying an advanced separation process via selective adsorption that uses minimal amounts of organic solvent and compact equipment. The process consists of two separation columns packed with a CMPO (octyl(phenyl)-N,N-diisobutylcarbamoyl-methyl phosphine oxide) adsorbent for elemental group separation and a soft-donor named the R-BTP (2,6-bis-(5,6-dialkyl-1,2,4-triazine-3-yl) pyridine) adsorbent for the isolation of MA from lanthanides (Ln). In this work, the effects of nitrate ion (NO3-) on the adsorption behavior of Am(III) and a typical fission product Ln(III) onto the isoBu-BTP/SiO2-P adsorbent were studied experimentally. Then, the desorption properties of the adsorbed element were examined using different eluting agents. A hot test for the separation of MA from the fission product Ln in a genuine MA containing effluent from the irradiated MOX-fuel treatment process was carried out using a nBu-BTP/SiO2-P packed column. It was found that the separation factor between Am(III) and Ln(III)-FP is over 100 in the measured 0.5-4 M NO3-. The adsorbed elements could be effectively eluted off using a complexing agent such as DTPA or pure water. Complete separation between MA and Ln was achieved in the column results, indicating that the proposed MA separation process is feasible in principle.

12.
J Environ Manage ; 319: 115718, 2022 Oct 01.
Article En | MEDLINE | ID: mdl-35868183

Effective and efficient disposal of radioactive pollution has been crucial for responding to unexpected nuclear accidents and guaranteeing the sustainable development of nuclear energy. In this study, a kind of porous zirconium phosphate was synthesized with a sol-gel process followed by a post-synthesis modification to remove the radioactive Sr2+ from wastewater. The prepared materials were characterized by different technologies including FT-IR, SEM-EDS, XRD and XPS, and then the adsorption performance was evaluated in batch and column modes. Experimental results suggested that the porous zirconium phosphate adsorbent was successfully prepared with Na+ dispersed in the channels for exchange. It inherited the excellent properties of zirconium dioxide aerogel and exhibited mesoporous structure and large specific surface area. Compared with traditional zirconium phosphate, the adsorption kinetics and the adsorption capacity were improved simultaneously. Especially, it showed excellent selectivity towards Sr2+ among different cations, and even could remove the low-level Sr2+ from natural seawater efficiently, which powerfully demonstrated that the prepared material could be applied in the treatment of practical wastewater. Spectra studies uncovered that the adsorption activities were dominated by the ion exchange mechanism between external Sr2+ and interlaminar Na+ or H+. In conclusion, this paper not only reports a novel synthesis strategy for the acquisition of porous zirconium phosphate, but also presents a promising adsorbent for the Sr2+ removal.


Wastewater , Water Pollutants, Chemical , Adsorption , Hydrogen-Ion Concentration , Kinetics , Phosphates/chemistry , Porosity , Spectroscopy, Fourier Transform Infrared , Strontium , Water Pollutants, Chemical/chemistry , Zirconium/chemistry
13.
J Colloid Interface Sci ; 615: 110-123, 2022 Jun.
Article En | MEDLINE | ID: mdl-35124499

In this study, a layered ammonium vanadate (NH4V4O10) nanobelt adsorbent was synthesized by a facile hydrothermal method to remove Sr2+ and Cs+ from contaminated water. The NH4V4O10 nanobelt was texturally and morphologically characterized by scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HRTEM), X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), Raman, thermogravimetric differential thermal analyzer (TG-DSC), Brunauer- Emmett-Teller (BET), and X-ray photoelectron spectroscopy (XPS) both before and after adsorbing Sr2+ and Cs+. The results showed that the NH4V4O10 nanobelt exhibited the optimal morphological structure with a 2:1 ratio of NH4VO3:dipropylamine. In the lattice of the adsorbent, the horizontal distance between oxygen atoms was 0.55 nm, the vertical distance between vanadium was 0.35 nm, and the layer distance of the adsorbent was 0.931 nm. The structure characterization indicated the VO6 octahedron formed a basic framework through sharing connected vertices. Adsorption mechanism studies indicated that ion exchange was the main adsorption mechanism for removing Sr2+ and Cs+. Batch experiments revealed that the adsorption capacity for Sr2+ was 192.52 mg/g under a pH of 2. Similarly, the adsorption capacity for Cs+ was 251.09 mg/g when the pH was 5. The adsorption kinetics and adsorption isotherms data were in accordance with the pseudo-second-order kinetic model and Langmuir model, respectively. Adsorption isotherms results also indicated that the adsorption of Sr2+ and Cs+ was endothermic (ΔHSr0 = 3.6 kJ/mol, ΔHCs0 = 29.1 kJ/mol) and increased entropy (ΔSSr0 = 29.15 J/molK, ΔSCs0 = 160.38 J/molK). Finally, the structure of the adsorbent, the adsorption performance and mechanism, and the interpretation of selective adsorption were also calculated by DFT method at the molecular level and the results were consistent with the experimental data.

14.
Chemosphere ; 288(Pt 2): 132600, 2022 Feb.
Article En | MEDLINE | ID: mdl-34666073

Multivariate metal-organic frameworks (MTV-MOFs) are expected as catalyst to apply to the advanced oxidation processes (AOPs) based on sulfate radical (SO4·-) to treat wastewater containing organic pollutants. Mixing metals de novo method was combined with stringent solvothermal conditions to synthesize macaroon-like NbCo-MOF catalyst. NbCo-MOF catalyst prepared with different atom ratios and growth time presented various morphology, structure, performance, and distinctive MTV-MOFs growth law which were confirmed by SEM, TEM, EDS, XRD, FTIR, raman spectra and UV-vis spectra. Besides, optimum peroxymonosulfate (PMS) catalytic activation conditions were studied. Furthermore, the effects of anions (Cl-, NO3-, HCO3-, and C2O42-) on NbCo-MOF catalytic activation were explored which were proved very limited. Particularly, the Co2+/Co3+ cycle combining with the Nb4+/Nb5+ cycle for PMS activation were verified by XPS. EPR and quenching experiment results indicated exists non-radical pathway (1O2), but radical pathways are dominant (SO4·- O2·-, and ·OH). Moreover, the TC removal rate exhibited no significant reduce after three times run. Furthermore, NbCo-MOF exhibited excellent decomposing ability towards methylene blue, tylosin tartrate, rhodamine B, and tetracycline with the removal rate reaching to 100%, 98.4%, 99.7%, and 99.7% in 30 min respectively and also maintained good performance in actual water environment.


Environmental Pollutants , Catalysis , Oxidation-Reduction , Peroxides
15.
J Hazard Mater ; 408: 124949, 2021 04 15.
Article En | MEDLINE | ID: mdl-33385731

A novel composite of zero-valent iron nanoparticles supported on alkalized Ti3C2Tx nanoflakes (nZVI/Alk-Ti3C2Tx) was constructed by an in-situ growth method for simultaneous adsorption and reduction U(VI) from aqueous solution in anoxic conditions. The effect of various factors such as adsorbent dose, pH, ionic strength, contact time, initial U(VI) concentration and environmental media were comprehensively investigated by batch experiments. Benefiting from the good dispersion uniformity of nZVI on MXene substrates, nZVI/Alk-Ti3C2Tx exhibited rapid removal kinetics, excellent selectivity, 100% removal efficiency and up to 1315 mg g-1 uptake capacity for U(VI) capture. In the presence of mimic groundwater, 1.0 mM NaHCO3 and 10 mg L-1 humic acid, the removal percentages of U(VI) by the composites could reach 95.1%, 88.9% and 69.5%, respectively. The reaction mechanism between U(VI) and nZVI/Alk-Ti3C2Tx has been clarified based on FTIR, XANES, XPS and XRD analysis. Depending on the consumption of reactive nZVI in the composites and the solution pH, the elimination of U(VI) could be realized by different pathways including reductive immobilization in the form of UO2, inner-sphere surface complexation and hydrolysis precipitation. The present study illustrates that the nZVI/Alk-Ti3C2Tx composite may be an efficient scavenger for radioactive wastewater purification in environmental remediation.

16.
Waste Manag ; 120: 193-201, 2021 Feb 01.
Article En | MEDLINE | ID: mdl-33310131

The phenomenon of the long leaching time and low leaching rate is presented in the acid leaching process under the conventional conditions of low reaction temperature and acid concentration. In order to promote leaching rates of indium and tin in waste liquid crystal display, an optimized process combining rapid milling and acid leaching has been proposed, which is more time and energy-efficient, environmentally sound compared with the traditional acid leaching process. Leaching mechanism analysis was conducted to uncover the different leaching behavior of indium and tin. And the external factors affecting the leaching rates of indium and tin were studied to optimize. In this process, the fine powder with a weight ratio of 97.6%, which particle size less than 0.075 mm, was obtained with the optimal milling time of 30 min by rapid grinding in the planetary high energy ball milling. About -0.003 l/s of grinding rate constant was performed in the grinding size fraction from 3 mm to 0.075 mm. The research results indicated that the particle size less than 0.035 mm was agglomerated, and the addition of H2O2 reduced the leaching rate for the particle size less than 0.075 mm. Moreover, 86.3% and 76.1% of indium and tin were leached in a short leaching time of 10 min by using 3 M H2SO4 at 85 °C for particle size range from 0.075 to 0.035 mm, while 96.9% and 85.6%, respectively in 90 min.


Electronic Waste , Indium , Electronic Waste/analysis , Hydrogen Peroxide , Recycling , Tin
17.
Water Res ; 177: 115804, 2020 Jun 15.
Article En | MEDLINE | ID: mdl-32302807

The adsorption and desorption of cesium (Cs) on clays of contaminated soil in a rhizosphere zone can be greatly affected by various biogeochemical processes, the timespans of which are usually months to years. Herein, we present several representative scenarios of the binding of Cs on diverse sites of vermiculitized biotite by controlled Cs adsorption to particles of different sizes. We investigated whether and how the fixed Cs in the different scenarios is desorbed by ambient and hydrothermal treatments with several low-molecular-weight organic acids (LMWOAs). The results showed that the sorbed Cs was discriminatively retained in the un-collapsed, partially collapsed, and thoroughly collapsed structures of vermiculites. The desorption of the sorbed Cs by hydrothermal LMWOAs extractions was easily realized in the un-collapsed structure, but was limited or minimal in the partially collapsed and thoroughly collapsed structures. The Cs desorption varied in accord with the LMWOA species applied and increased with the acid concentration, temperature, and number of treating cycles. The analysis of Cs-desorbed specimens confirmed their partial destruction and interlayer expansion, suggesting that the underlying mechanism of Cs removal by LMWOAs involves not only acid dissolution and complexation but also the accelerated weathering of clays within a short time under hydrothermal conditions. Our findings contribute novel insights into the mobility, bioavailability, and fate of Cs in contaminated soils and its removal from these soils for environmental restorations.


Clay , Soil , Adsorption , Cesium , Cesium Radioisotopes , Decontamination , Minerals
18.
J Phys Chem A ; 124(19): 3720-3729, 2020 May 14.
Article En | MEDLINE | ID: mdl-32310650

The key to effective separation of neptunium from the spent fuel reprocessing process is to adjust and control its valence state. Hydrazine and its derivatives have been experimentally confirmed to be effective salt-free reductants for reducing Np(VI) to Np(V). We theoretically studied the reduction reactions of Np(VI) with three hydrazine derivatives (2-hydroxyethyl hydrazine (HOC2H4N2H3), methyl hydrazine (CH3N2H3), and formyl hydrazide (CHON2H3)) and obtained the free radical ion mechanism and the free radical mechanism. Their potential energy profiles (PEPs) suggest that the free radical mechanism is the most probable reaction. Based on the energy barrier of the free radical ion mechanism, the trend of the reduction ability of the three hydrazine derivatives is HOC2H4N2H3 > CH3N2H3 > CHON2H3, which is in excellent agreement with the experimental results. Lastly, the analyses of natural bond orbitals (NBOs), quantum theory of atoms-in-molecules (QTAIM), and electron localization function (ELF) have been carried out to explore the bonding evolution of the structures along the reaction pathways. This work provides an insight into the reduction mechanism of Np(VI) with hydrazine derivatives from the theoretical perspective and helps to design more effective reductants for the separation of U/Np and Np/Pu in spent fuel reprocessing.

...