Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 2 de 2
1.
J Biochem Mol Toxicol ; 37(11): e23470, 2023 Nov.
Article En | MEDLINE | ID: mdl-37477183

Oesophageal squamous-cell carcinoma (ESCC) is a malignant tumor of the digestive system with a poor prognosis. Recent studies have shown the promoting effect of hsa_circ_0058063 (circ_0058063) on ESCC, but the potential regulatory mechanisms of circ_0058063 in ESCC remain largely unclear. The levels of circ_0058063, microRNA-4319 (miR-4319) and mRNA of thrombospondin-1 (THBS1) were indicated by quantitative real-time polymerase chain reaction in ESCC tissues and cells. Meanwhile, the level of THBS1 was quantified by western blot analysis. In addition, the cell functions were examined by CCK8 assay, Edu assay, flow cytometry assay and transwell assay. Furthermore, the interplay between miR-4319 and circ_0058063 or THBS1 was detected by dual-luciferase reporter assay. Finally, an in vivo experiment was implemented to confirm the effect of circ_0058063. The level of circ_0058063 and THBS1 were increased, and the miR-4319 level was decreased in ESCC tissues in contrast to that in normal tissues and cells. For functional analysis, circ_0058063 deficiency inhibited cell vitality, cell proliferation, migration and invasion in ESCC cells, whereas promoted cell apoptosis. Moreover, miR-4319 was confirmed to repress the progression of ESCC cells by suppressing THBS1. In mechanism, circ_0058063 acted as a miR-4319 sponge to regulate the level of THBS1. Besides, circ_0058063 knockdown also attenuated tumour growth in vivo. Circ_0058063 facilitates the development of ESCC through increasing THBS1 expression by regulating miR-4319, which also offered an underlying targeted therapy for ESCC treatment.


Esophageal Neoplasms , Esophageal Squamous Cell Carcinoma , MicroRNAs , Humans , Esophageal Squamous Cell Carcinoma/genetics , Apoptosis , Cell Proliferation , Esophageal Neoplasms/genetics , MicroRNAs/genetics , Cell Line, Tumor
2.
Front Oncol ; 11: 630241, 2021.
Article En | MEDLINE | ID: mdl-33842336

OBJECTIVE: Non-small cell lung cancer (NSCLC) is a common malignant tumor, which has high incidence and low the 5-year survival rate. Long non-coding RNAs (lncRNAs) play critical roles in carcinoma occurrence and metastasis. Herein, our aim was to investigate the effects of lncRNA SNHG19 in NSCLC progression. MATERIALS AND METHODS: Long non-coding RNA Small Nucleolar RNA Host Gene 19 (lncRNA SNHG19) expression level was measured by bioinformatics and qRT-PCR. Edu, Transwell, and scratch assays were performed to explore the role of si-SNHG19 or SNHG19 on NSCLC progression. Luciferase assay was used to verify the relationship between SNHG19/E2F7 and miR-137. The experiment of Xenograft was used for exploring the function of SNHG19 in vivo. RESULTS: SNHG19 was upregulated in cancer tissues, patients plasma and cell lines of NSCLC. Knockdown of SNHG19 inhibited cell proliferation, migration, and invasion. Luciferase assay confirmed that SNHG19 regulated E2F7 expression via interacting with miR-137. Overexpression of SNHG19 accelerated NSCLC tumor progression via miR-137/E2F7 axis both in vitro and in vivo. CONCLUSIONS: Our results clarified the SNHG19 function for the first time, and SNHG19 promoted the progression of NSCLC, which was mediated by the miR-137/E2F7 axis. This study might provide new understanding and targets for NSCLC diagnosis and treatment.

...