Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 6 de 6
1.
Cell Rep ; 20(6): 1422-1434, 2017 08 08.
Article En | MEDLINE | ID: mdl-28793265

Increased pro-inflammatory signaling is a hallmark of metabolic dysfunction in obesity and diabetes. Although both inflammatory and energy substrate handling processes represent critical layers of metabolic control, their molecular integration sites remain largely unknown. Here, we identify the heterodimerization interface between the α and ß subunits of transcription factor GA-binding protein (GAbp) as a negative target of tumor necrosis factor alpha (TNF-α) signaling. TNF-α prevented GAbpα and ß complex formation via reactive oxygen species (ROS), leading to the non-energy-dependent transcriptional inactivation of AMP-activated kinase (AMPK) ß1, which was identified as a direct hepatic GAbp target. Impairment of AMPKß1, in turn, elevated downstream cellular cholesterol biosynthesis, and hepatocyte-specific ablation of GAbpα induced systemic hypercholesterolemia and early macro-vascular lesion formation in mice. As GAbpα and AMPKß1 levels were also found to correlate in obese human patients, the ROS-GAbp-AMPK pathway may represent a key component of a hepato-vascular axis in diabetic long-term complications.


Atherosclerosis/metabolism , GA-Binding Protein Transcription Factor/metabolism , Hepatocytes/metabolism , Hypercholesterolemia/metabolism , Protein Kinases/metabolism , Signal Transduction , AMP-Activated Protein Kinase Kinases , Animals , Atherosclerosis/etiology , Atherosclerosis/pathology , Cell Line , Cells, Cultured , Cholesterol/metabolism , GA-Binding Protein Transcription Factor/chemistry , Hypercholesterolemia/complications , Male , Mice , Mice, Inbred C57BL , Protein Multimerization , Protein Subunits/chemistry , Protein Subunits/metabolism , Reactive Oxygen Species/metabolism , Tumor Necrosis Factor-alpha/metabolism
2.
Nat Med ; 22(10): 1120-1130, 2016 10.
Article En | MEDLINE | ID: mdl-27571348

Cachexia represents a fatal energy-wasting syndrome in a large number of patients with cancer that mostly results in a pathological loss of skeletal muscle and adipose tissue. Here we show that tumor cell exposure and tumor growth in mice triggered a futile energy-wasting cycle in cultured white adipocytes and white adipose tissue (WAT), respectively. Although uncoupling protein 1 (Ucp1)-dependent thermogenesis was dispensable for tumor-induced body wasting, WAT from cachectic mice and tumor-cell-supernatant-treated adipocytes were consistently characterized by the simultaneous induction of both lipolytic and lipogenic pathways. Paradoxically, this was accompanied by an inactivated AMP-activated protein kinase (Ampk), which is normally activated in peripheral tissues during states of low cellular energy. Ampk inactivation correlated with its degradation and with upregulation of the Ampk-interacting protein Cidea. Therefore, we developed an Ampk-stabilizing peptide, ACIP, which was able to ameliorate WAT wasting in vitro and in vivo by shielding the Cidea-targeted interaction surface on Ampk. Thus, our data establish the Ucp1-independent remodeling of adipocyte lipid homeostasis as a key event in tumor-induced WAT wasting, and we propose the ACIP-dependent preservation of Ampk integrity in the WAT as a concept in future therapies for cachexia.


AMP-Activated Protein Kinases/metabolism , Adipocytes, White/drug effects , Adipose Tissue, White/drug effects , Apoptosis Regulatory Proteins/drug effects , Cachexia/metabolism , Lipid Metabolism/drug effects , Neoplasms/metabolism , Peptide Fragments/pharmacology , AMP-Activated Protein Kinases/pharmacology , Adipocytes, White/metabolism , Adipose Tissue, White/metabolism , Animals , Apoptosis Regulatory Proteins/metabolism , Cachexia/etiology , Cells, Cultured , In Vitro Techniques , Lipogenesis/drug effects , Lipolysis/drug effects , Mice , Neoplasms/complications , Thermogenesis/drug effects , Uncoupling Protein 1/drug effects , Uncoupling Protein 1/metabolism
3.
EMBO Mol Med ; 8(6): 654-69, 2016 06.
Article En | MEDLINE | ID: mdl-27137487

Recent studies have demonstrated that repeated short-term nutrient withdrawal (i.e. fasting) has pleiotropic actions to promote organismal health and longevity. Despite this, the molecular physiological mechanisms by which fasting is protective against metabolic disease are largely unknown. Here, we show that, metabolic control, particularly systemic and liver lipid metabolism, is aberrantly regulated in the fasted state in mouse models of metabolic dysfunction. Liver transcript assays between lean/healthy and obese/diabetic mice in fasted and fed states uncovered "growth arrest and DNA damage-inducible" GADD45ß as a dysregulated gene transcript during fasting in several models of metabolic dysfunction including ageing, obesity/pre-diabetes and type 2 diabetes, in both mice and humans. Using whole-body knockout mice as well as liver/hepatocyte-specific gain- and loss-of-function strategies, we revealed a role for liver GADD45ß in the coordination of liver fatty acid uptake, through cytoplasmic retention of FABP1, ultimately impacting obesity-driven hyperglycaemia. In summary, fasting stress-induced GADD45ß represents a liver-specific molecular event promoting adaptive metabolic function.


Cell Cycle Proteins/metabolism , Fasting , Fatty Acids/metabolism , Liver/metabolism , Nuclear Proteins/metabolism , Animals , Fatty Acid-Binding Proteins/metabolism , Mice , Mice, Knockout
4.
Cancer Res ; 74(16): 4515-25, 2014 Aug 15.
Article En | MEDLINE | ID: mdl-24848510

Hepatocellular carcinoma (HCC) was thought historically to arise from hepatocytes, but gene expression studies have suggested that it can also arise from fetal progenitor cells or their adult progenitor progeny. Here, we report the identification of a unique population of fetal liver progenitor cells in mice that can serve as a cell of origin in HCC development. In the transgenic model used, mice carry the Cited1-CreER(TM)-GFP BAC transgene in which a tamoxifen-inducible Cre (CreER(TM)) and GFP are controlled by a 190-kb 5' genomic region of Cited1, a transcriptional coactivator protein for CBP/p300. Wnt signaling is critical for regulating self-renewal of progenitor/stem cells and has been implicated in the etiology of cancers of rapidly self-renewing tissues, so we hypothesized that Wnt pathway activation in CreER(TM)-GFP(+) progenitors would result in HCC. In livers from the mouse model, transgene-expressing cells represented 4% of liver cells at E11.5 when other markers were expressed, characteristic of the hepatic stem/progenitor cells that give rise to adult hepatocytes, cholangiocytes, and SOX9(+) periductal cells. By 26 weeks of age, more than 90% of Cited1-CreER(TM)-GFP;Ctnnb1(ex3(fl)) mice with Wnt pathway activation developed HCC and, in some cases, hepatoblastomas and lung metastases. HCC and hepatoblastomas resembled their human counterparts histologically, showing activation of Wnt, Ras/Raf/MAPK, and PI3K/AKT/mTOR pathways and expressing relevant stem/progenitor cell markers. Our results show that Wnt pathway activation is sufficient for malignant transformation of these unique liver progenitor cells, offering functional support for a fetal/adult progenitor origin of some human HCC. We believe this model may offer a valuable new tool to improve understanding of the cellular etiology and biology of HCC and hepatoblastomas and the development of improved therapeutics for these diseases.


Liver Neoplasms, Experimental/metabolism , Neoplastic Stem Cells/metabolism , Wnt Proteins/metabolism , Animals , Cell Growth Processes/physiology , Cell Line, Tumor , Gene Expression Regulation, Neoplastic , Liver Neoplasms, Experimental/genetics , Liver Neoplasms, Experimental/pathology , Mice , Mice, Transgenic , Neoplastic Stem Cells/pathology , Signal Transduction
5.
Mol Metab ; 3(2): 155-66, 2014 Apr.
Article En | MEDLINE | ID: mdl-24634828

Disturbances in lipid homeostasis are hallmarks of severe metabolic disorders and their long-term complications, including obesity, diabetes, and atherosclerosis. Whereas elevation of triglyceride (TG)-rich very-low-density lipoproteins (VLDL) has been identified as a risk factor for cardiovascular complications, high-density lipoprotein (HDL)-associated cholesterol confers atheroprotection under obese and/or diabetic conditions. Here we show that hepatocyte-specific deficiency of transcription factor transforming growth factor ß 1-stimulated clone (TSC) 22 D1 led to a substantial reduction in HDL levels in both wild-type and obese mice, mediated through the transcriptional down-regulation of the HDL formation pathway in liver. Indeed, overexpression of TSC22D1 promoted high levels of HDL cholesterol in healthy animals, and hepatic expression of TSC22D1 was found to be aberrantly regulated in disease models of opposing energy availability. The hepatic TSC22D1 transcription factor complex may thus represent an attractive target in HDL raising strategies in obesity/diabetes-related dyslipidemia and atheroprotection.

6.
Mol Biosyst ; 10(7): 1709-18, 2014 Jul.
Article En | MEDLINE | ID: mdl-24457530

Non-ribosomal peptide synthetases (NRPSs) are enzymes that catalyze ribosome-independent production of small peptides, most of which are bioactive. NRPSs act as peptide assembly lines where individual, often interconnected modules each incorporate a specific amino acid into the nascent chain. The modules themselves consist of several domains that function in the activation, modification and condensation of the substrate. NRPSs are evidently modular, yet experimental proof of the ability to engineer desired permutations of domains and modules is still sought. Here, we use a synthetic-biology approach to create a small library of engineered NRPSs, in which the domain responsible for carrying the activated amino acid (T domain) is exchanged with natural or synthetic T domains. As a model system, we employ the single-module NRPS IndC from Photorhabdus luminescens that produces the blue pigment indigoidine. As chassis we use Escherichia coli. We demonstrate that heterologous T domain exchange is possible, even for T domains derived from different organisms. Interestingly, substitution of the native T domain with a synthetic one enhanced indigoidine production. Moreover, we show that selection of appropriate inter-domain linker regions is critical for functionality. Taken together, our results extend the engineering avenues for NRPSs, as they point out the possibility of combining domain sequences coming from different pathways, organisms or from conservation criteria. Moreover, our data suggest that NRPSs can be rationally engineered to control the level of production of the corresponding peptides. This could have important implications for industrial and medical applications.


Bacterial Proteins/genetics , Peptide Synthases/genetics , Photorhabdus/enzymology , Piperidones/metabolism , Amino Acid Sequence , Bacterial Proteins/metabolism , Escherichia coli/genetics , Genetic Variation , Peptide Synthases/metabolism , Peptides/metabolism , Protein Engineering/methods , Sequence Homology, Amino Acid
...