Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Front Cell Infect Microbiol ; 12: 866729, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35795184

RESUMEN

The obligate intracellular bacteria Chlamydia trachomatis store glycogen in the lumen of the vacuoles in which they grow. Glycogen catabolism generates glucose-1-phosphate (Glc1P), while the bacteria can take up only glucose-6-phosphate (Glc6P). We tested whether the conversion of Glc1P into Glc6P could be catalyzed by a phosphoglucomutase (PGM) of host or bacterial origin. We found no evidence for the presence of the host PGM in the vacuole. Two C. trachomatis proteins, CT295 and CT815, are potential PGMs. By reconstituting the reaction using purified proteins, and by complementing PGM deficient fibroblasts, we demonstrated that only CT295 displayed robust PGM activity. Intriguingly, we showed that glycogen accumulation in the lumen of the vacuole of a subset of Chlamydia species (C. trachomatis, C. muridarum, C. suis) correlated with the presence, in CT295 orthologs, of a secretion signal recognized by the type three secretion (T3S) machinery of Shigella. C. caviae and C. pneumoniae do not accumulate glycogen, and their CT295 orthologs lack T3S signals. In conclusion, we established that the conversion of Glc1P into Glc6P was accomplished by a bacterial PGM, through the acquisition of a T3S signal in a "housekeeping" protein. Acquisition of this signal likely contributed to shaping glycogen metabolism within Chlamydiaceae.


Asunto(s)
Chlamydia trachomatis , Fosfoglucomutasa , Chlamydia trachomatis/genética , Chlamydia trachomatis/metabolismo , Glucosa-6-Fosfato/metabolismo , Glucógeno/metabolismo , Fosfoglucomutasa/genética , Fosfoglucomutasa/metabolismo , Vacuolas/metabolismo
2.
Sci Rep ; 11(1): 5848, 2021 03 12.
Artículo en Inglés | MEDLINE | ID: mdl-33712643

RESUMEN

The tumoral origin and extensive passaging of HeLa cells, a most commonly used cervical epithelial cell line, raise concerns on their suitability to study the cell responses to infection. The present study was designed to isolate primary epithelial cells from human ectocervix explants and characterize their susceptibility to C. trachomatis infection. We achieved a high purity of isolation, assessed by the expression of E-cadherin and cytokeratin 14. The infectious progeny in these primary epithelial cells was lower than in HeLa cells. We showed that the difference in culture medium, and the addition of serum in HeLa cultures, accounted for a large part of these differences. However, all things considered the primary ectocervical epithelial cells remained less permissive than HeLa cells to C. trachomatis serovar L2 or D development. Finally, the basal level of transcription of genes coding for pro-inflammatory cytokines was globally higher in primary epithelial cells than in HeLa cells. Transcription of several pro-inflammatory genes was further induced by infection with C. trachomatis serovar L2 or serovar D. In conclusion, primary epithelial cells have a strong capacity to mount an inflammatory response to Chlamydia infection. Our simplified purification protocol from human explants should facilitate future studies to understand the contribution of this response to limiting the spread of the pathogen to the upper female genital tract.


Asunto(s)
Cuello del Útero/patología , Chlamydia trachomatis/fisiología , Células Epiteliales/microbiología , Células Epiteliales/patología , Inflamación/patología , Proliferación Celular , Separación Celular , Forma de la Célula , Infecciones por Chlamydia/inmunología , Infecciones por Chlamydia/microbiología , Chlamydia trachomatis/crecimiento & desarrollo , Células Epiteliales/inmunología , Femenino , Fibroblastos/microbiología , Células HeLa , Humanos , Inmunidad
3.
Artículo en Inglés | MEDLINE | ID: mdl-29868501

RESUMEN

Invasion of epithelial cells by the obligate intracellular bacterium Chlamydia trachomatis results in its enclosure inside a membrane-bound compartment termed an inclusion. The bacterium quickly begins manipulating interactions between host intracellular trafficking and the inclusion interface, diverging from the endocytic pathway and escaping lysosomal fusion. We have identified a previously uncharacterized protein, CT622, unique to the Chlamydiaceae, in the absence of which most bacteria failed to establish a successful infection. CT622 is abundant in the infectious form of the bacteria, in which it associates with CT635, a putative novel chaperone protein. We show that CT622 is translocated into the host cytoplasm via type three secretion throughout the developmental cycle of the bacteria. Two separate domains of roughly equal size have been identified within CT622 and a 1.9 Å crystal structure of the C-terminal domain has been determined. Genetic disruption of ct622 expression resulted in a strong bacterial growth defect, which was due to deficiencies in proliferation and in the generation of infectious bacteria. Our results converge to identify CT622 as a secreted protein that plays multiple and crucial roles in the initiation and support of the C. trachomatis growth cycle. They reveal that genetic disruption of a single effector can deeply affect bacterial fitness.


Asunto(s)
Antígenos Bacterianos/metabolismo , Proteínas Bacterianas/metabolismo , Infecciones por Chlamydia/microbiología , Chlamydia trachomatis/crecimiento & desarrollo , Chlamydia trachomatis/metabolismo , Antígenos Bacterianos/genética , Proteínas Bacterianas/genética , Proliferación Celular , Chlamydia trachomatis/genética , Clonación Molecular , Citoplasma/química , Citoplasma/microbiología , Perfilación de la Expresión Génica , Regulación Bacteriana de la Expresión Génica , Genes Bacterianos/genética , Células HeLa , Interacciones Huésped-Patógeno , Humanos , Modelos Moleculares , Conformación Proteica , Vías Secretoras , Alineación de Secuencia , Sistemas de Secreción Tipo III
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA