Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Small ; : e2403013, 2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38874067

RESUMEN

Stabilizing liquid-liquid interfaces, whether between miscible or immiscible liquids, is crucial for a wide range of applications, including energy storage, microreactors, and biomimetic structures. In this study, a versatile approach for stabilizing the water-oil interface is presented using the morphological transitions that occur during the self-assembly of anionic, cationic, and nonionic surfactants mixed with fatty acid oils. The morphological transitions underlying this approach are characterized and extensively studied through small-angle X-ray scattering (SAXS), rheometry, and microscopy techniques. Dissipative particle dynamics (DPD) as a simulation tool is adopted to investigate these morphological transitions both in the equilibrium ternary system as well as in the dynamic condition of the water-oil interface. Such a versatile strategy holds promise for enhancing applications such as liquid-in-liquid 3D printing. Moreover, it has the potential to revolutionize a wide range of fields where stabilizing liquid-liquid interfaces not only offers unprecedented opportunities for fine-tuning nanostructural morphologies but also imparts interesting practical features to the resulting liquid shapes. These features include perfusion capabilities, self-healing, and porosity, which could have significant implications for various industries.

2.
Small ; 19(16): e2206524, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36670057

RESUMEN

Shaping soft materials into prescribed 3D complex designs has been challenging yet feasible using various 3D printing technologies. For a broader range of soft matters to be printable, liquid-in-liquid 3D printing techniques have emerged in which an ink phase is printed into 3D constructs within a bath. Most of the attention in this field has been focused on using a support bath with favorable rheology (i.e., shear-thinning behavior) which limits the selection of materials, impeding the broad application of such techniques. However, a growing body of work has begun to leverage the interaction or association of the two involved phases (specifically at the liquid-liquid interface) to fabricate complex constructs from a myriad of soft materials with practical structural, mechanical, optical, magnetic, and communicative properties. This review article has provided an overview of the studies on such associative liquid-in-liquid 3D printing techniques along with their fundamentals, underlying mechanisms, various characterization techniques used for ensuring the structural stability, and practical properties of prints. Also, the future paths with the potential applications are discussed.

3.
Int J Pharm ; 626: 122070, 2022 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-36041591

RESUMEN

This study aims to characterize the rheological behavior of a novel phenylboronic acid (PBA)-based closomer nanoconjugate (Closogel) with potential application in pharmaceutical formulation. PBA was used as a cross-linking agent and model (antiviral) drug. The PBA loaded Closogel chemical structure was analyzed by boron (11B) NMR and Fourier transform infrared (FTIR) spectroscopy. The Closogel and control hydroxyethyl cellulose (HEC) gel were analyzed under oscillatory and continuous shear rheometry followed by mathematical modeling to characterize the gel flow behavior. The chemical analysis confirmed the existence of characteristic borate esters peaks and Boron chemical shifts within Closogel spectra. Due to its more flexible molecular structure, undiluted Closogel exhibited lower, yield stress, viscosity and relaxation time (30 Pa &163 Pa.s & 0.21 s vs 45 Pa &301 Pa.s & 0.39 s for HEC). Both Closogel and HEC gels exhibited a thixotropic behavior. The plastic undiluted and pseudoplastic 2.5 % w/v aqueous Closogels were more viscous than elastic (tan (δ) > 1) in the linear viscoelastic range. The Herschel-Bulkley model showed a significant fitting to all experimental data (R2 > 0.95). The 0.25 % w/v aqueous Closogel nearly exhibited a Newtonian behavior with a flow index of 0.93. These data suggest that PBA loaded Closomer-based gels have similar rheological behavior, with lower complex modulus than that of HEC gels, and they can be a promising platform used for delivery of topical antiviral or other bioactive agents.


Asunto(s)
Boratos , Nanoconjugados , Antivirales , Boro , Ácidos Borónicos , Celulosa/química , Ésteres , Geles , Plásticos , Reología/métodos , Viscosidad
4.
Soft Matter ; 18(13): 2611-2633, 2022 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-35297452

RESUMEN

Associative surfactants systems involving polar oils have recently been shown to stabilize immiscible liquids by forming nanostructures at the liquid interface and have been used to print soft materials. Although these associating surfactant systems show great promise for creating nanostructured soft materials, a fundamental understanding of the self-assembly process is still unknown. In this study, a ternary phase diagram for a system of cationic surfactant cetylpyridinium chloride monohydrate (CPCl), a polar oil (oleic acid), and water is established using experiment and simulation, to study the equilibrium phase behavior. A combination of visual inspection, small-angle X-ray scattering (SAXS), and rheological measurements was employed to establish the phase behavior and properties of the self-assembled materials. Dissipative particle dynamics (DPD) is used to simulate the formation of the morphologies in this system and support the experimental results. The ternary phase diagram obtained from the simulations agrees with the experimental results, indicating the robustness of the computational simulation as a supplement to the mesoscale experimental systems. We observe that morphological transitions (e.g., micelle-to-bilayer and vesicle-to-lamellar) are in agreement between experiments and simulations across the ternary diagram. DPD simulations correctly predict that associative surfactant systems form new nanoscale phases due to the co-assembly of the components. The established ternary phase diagram and the DPD model pave the way towards predicting and controlling the formation of different mesostructures like lamellar or vesicles, opening new avenues to tailor and synthesize desired morphologies for applications related to liquid-in-liquid 3D printing.

5.
Macromol Rapid Commun ; 42(22): e2100445, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34569682

RESUMEN

The ability to print soft materials into predefined architectures with programmable nanostructures and mechanical properties is a necessary requirement for creating synthetic biomaterials that mimic living tissues. However, the low viscosity of common materials and lack of required mechanical properties in the final product present an obstacle to the use of traditional additive manufacturing approaches. Here, a new liquid-in-liquid 3D printing approach is used to successfully fabricate constructs with internal nanostructures using in situ self-assembly during the extrusion of an aqueous solution containing surfactant and photocurable polymer into a stabilizing polar oil bath. Subsequent photopolymerization preserves the nanostructures created due to surfactant self-assembly at the immiscible liquid-liquid interface, which is confirmed by small-angle X-ray scattering. Mechanical properties of the photopolymerized prints are shown to be tunable based on constituent components of the aqueous solution. The reported 3D printing approach expands the range of low-viscosity materials that can be used in 3D printing, and enables robust constructs production with internal nanostructures and spatially defined features. The reported approach has broad applications in regenerative medicine by providing a platform to print self-assembling biomaterials into complex tissue mimics where internal supramolecular structures and their functionality control biological processes, similar to natural extracellular matrices.


Asunto(s)
Nanoestructuras , Impresión Tridimensional , Materiales Biocompatibles , Polímeros , Viscosidad
6.
Phys Rev Lett ; 122(17): 178003, 2019 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-31107071

RESUMEN

Surfactant molecules have been extensively used as emulsifying agents to stabilize immiscible fluids. Droplet stability has been shown to be increased when ordered nanoscale phases form at the interface of the two fluids due to surfactant association. Here, we report on using mixtures of a cationic surfactant and long chained alkenes with polar head groups [e.g., cetylpyridinium chloride (CPCl) and oleic acid] to create an ordered nanoscale lamellar morphology at aqueous-oil interfaces. The self-assembled nanostructure at the liquid-liquid interface was characterized using small-angle x-ray scattering, and the mechanical properties were measured using interfacial rheology. We hypothesize that the resulting lamellar morphology at the liquid-liquid interface is driven by the change in critical packing parameter when the CPCl molecules are diluted by the presence of the long chain alkenes with polar head groups, which leads to a spherical micelle-to-lamellar phase transition. The work presented here has larger implications for using nanostructured interfacial material to separate different fluids in flowing conditions for biosystems and in 3D printing technology.

7.
Phys Rev E ; 96(5-1): 053102, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-29347693

RESUMEN

We present an experimental study of pattern formation during the penetration of an aqueous surfactant solution into a liquid fatty acid in a Hele-Shaw cell. When a solution of the cationic surfactant cetylpyridinium chloride is injected into oleic acid, a wide variety of fingering patterns are observed as a function of surfactant concentration and flow rate, which are strikingly different than the classic Saffman-Taylor (ST) instability. We observe evidence of interfacial material forming between the two liquids, causing these instabilities. Moreover, the number of fingers decreases with increasing flow rate Q, while the average finger width increases with Q, both trends opposite to the ST case. Bulk rheology on related mixtures indicates a gel-like state. Comparison of experiments using other oils indicates the importance of pH and the carboxylic head group in the formation of the surfactant-fatty acid material.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...