Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 207
Filtrar
1.
ACS Appl Bio Mater ; 7(6): 4175-4192, 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38830774

RESUMEN

Nerve growth factor (NGF) plays a crucial role in cellular growth and neurodifferentiation. To achieve significant neuronal regeneration and repair using in vitro NGF delivery, spatiotemporal control that follows the natural neuronal processes must be developed. Notably, a challenge hindering this is the uncontrolled burst release from the growth factor delivery systems. The rapid depletion of NGF reduces treatment efficacy, leading to poor cellular response. To address this, we developed a highly controllable system using graphene oxygen (GO) and GelMA hydrogels modulated by electrical stimulation. Our system showed superior control over the release kinetics, reducing the burst up 30-fold. We demonstrate that the system is also able to sequester and retain NGF up to 10-times more efficiently than GelMA hydrogels alone. Our controlled release system enabled neurodifferentiation, as revealed by gene expression and immunostaining analysis. The increased retention and reduced burst release from our system show a promising pathway for nerve tissue engineering research toward effective regeneration.


Asunto(s)
Materiales Biocompatibles , Estimulación Eléctrica , Grafito , Hidrogeles , Factor de Crecimiento Nervioso , Regeneración Nerviosa , Hidrogeles/química , Hidrogeles/farmacología , Grafito/química , Grafito/farmacología , Regeneración Nerviosa/efectos de los fármacos , Factor de Crecimiento Nervioso/farmacología , Factor de Crecimiento Nervioso/metabolismo , Factor de Crecimiento Nervioso/química , Materiales Biocompatibles/química , Materiales Biocompatibles/farmacología , Animales , Tamaño de la Partícula , Ensayo de Materiales , Ratas , Células PC12 , Ingeniería de Tejidos
2.
Nat Commun ; 15(1): 4361, 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38778053

RESUMEN

Oxygen plays a crucial role in human embryogenesis, homeostasis, and tissue regeneration. Emerging engineered regenerative solutions call for novel oxygen delivery systems. To become a reality, these systems must consider physiological processes, oxygen release mechanisms and the target application. In this review, we explore the biological relevance of oxygen at both a cellular and tissue level, and the importance of its controlled delivery via engineered biomaterials and devices. Recent advances and upcoming trends in the field are also discussed with a focus on tissue-engineered constructs that could meet metabolic demands to facilitate regeneration.


Asunto(s)
Oxígeno , Regeneración , Ingeniería de Tejidos , Humanos , Oxígeno/metabolismo , Ingeniería de Tejidos/métodos , Regeneración/fisiología , Animales , Materiales Biocompatibles/química
3.
ACS Biomater Sci Eng ; 10(6): 3775-3791, 2024 06 10.
Artículo en Inglés | MEDLINE | ID: mdl-38722625

RESUMEN

This study investigates the electrochemical behavior of GelMA-based hydrogels and their interactions with PC12 neural cells under electrical stimulation in the presence of conducting substrates. Focusing on indium tin oxide (ITO), platinum, and gold mylar substrates supporting conductive scaffolds composed of hydrogel, graphene oxide, and gold nanorods, we explored how the substrate materials affect scaffold conductivity and cell viability. We examined the impact of an optimized electrical stimulation protocol on the PC12 cell viability. According to our findings, substrate selection significantly influences conductive hydrogel behavior, affecting cell viability and proliferation as a result. In particular, the ITO substrates were found to provide the best support for cell viability with an average of at least three times higher metabolic activity compared to platinum and gold mylar substrates over a 7 day stimulation period. The study offers new insights into substrate selection as a platform for neural cell stimulation and underscores the critical role of substrate materials in optimizing the efficacy of neural interfaces for biomedical applications. In addition to extending existing work, this study provides a robust platform for future explorations aimed at tailoring the full potential of tissue-engineered neural interfaces.


Asunto(s)
Supervivencia Celular , Hidrogeles , Neuronas , Compuestos de Estaño , Ingeniería de Tejidos , Andamios del Tejido , Animales , Ingeniería de Tejidos/métodos , Células PC12 , Ratas , Compuestos de Estaño/química , Compuestos de Estaño/farmacología , Hidrogeles/química , Andamios del Tejido/química , Neuronas/fisiología , Neuronas/citología , Oro/química , Oro/farmacología , Grafito/química , Grafito/farmacología , Platino (Metal)/química , Estimulación Eléctrica , Nanotubos/química , Proliferación Celular
4.
ACS Nano ; 18(4): 3597-3613, 2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-38221746

RESUMEN

The central nervous system's limited capacity for regeneration often leads to permanent neuronal loss following injury. Reprogramming resident reactive astrocytes into induced neurons at the site of injury is a promising strategy for neural repair, but challenges persist in stabilizing and accurately targeting viral vectors for transgene expression. In this study, we employed a bioinspired self-assembling peptide (SAP) hydrogel for the precise and controlled release of a hybrid adeno-associated virus (AAV) vector, AAVDJ, carrying the NeuroD1 neural reprogramming transgene. This method effectively mitigates the issues of high viral dosage at the target site, off-target delivery, and immunogenic reactions, enhancing the vector's targeting and reprogramming efficiency. In vitro, this vector successfully induced neuron formation, as confirmed by morphological, histochemical, and electrophysiological analyses. In vivo, SAP-mediated delivery of AAVDJ-NeuroD1 facilitated the trans-differentiation of reactive host astrocytes into induced neurons, concurrently reducing glial scarring. Our findings introduce a safe and effective method for treating central nervous system injuries, marking a significant advancement in regenerative neuroscience.


Asunto(s)
Hidrogeles , Neuronas , Hidrogeles/farmacología , Hidrogeles/metabolismo , Neuronas/metabolismo , Sistema Nervioso Central , Péptidos/farmacología , Transgenes
5.
Adv Sci (Weinh) ; 11(5): e2303707, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38030559

RESUMEN

Current therapies for the devastating damage caused by traumatic brain injuries (TBI) are limited. This is in part due to poor drug efficacy to modulate neuroinflammation, angiogenesis and/or promoting neuroprotection and is the combined result of challenges in getting drugs across the blood brain barrier, in a targeted approach. The negative impact of the injured extracellular matrix (ECM) has been identified as a factor in restricting post-injury plasticity of residual neurons and is shown to reduce the functional integration of grafted cells. Therefore, new strategies are needed to manipulate the extracellular environment at the subacute phase to enhance brain regeneration. In this review, potential strategies are to be discussed for the treatment of TBI by using self-assembling peptide (SAP) hydrogels, fabricated via the rational design of supramolecular peptide scaffolds, as an artificial ECM which under the appropriate conditions yields a supramolecular hydrogel. Sequence selection of the peptides allows the tuning of these hydrogels' physical and biochemical properties such as charge, hydrophobicity, cell adhesiveness, stiffness, factor presentation, degradation profile and responsiveness to (external) stimuli. This review aims to facilitate the development of more intelligent biomaterials in the future to satisfy the parameters, requirements, and opportunities for the effective treatment of TBI.


Asunto(s)
Hidrogeles , Péptidos , Hidrogeles/química , Péptidos/química , Materiales Biocompatibles/farmacología , Matriz Extracelular/química , Adhesión Celular
6.
Biosens Bioelectron ; 246: 115876, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38039734

RESUMEN

Developing highly selective and sensitive biosensors for diabetes management blood glucose monitoring is essential to reduce the health risks associated with diabetes. Assessing the glycation (GA) of human serum albumin (HSA) serves as an indicator for medium-term glycemic control, making it suitable for assessing the efficacy of blood glucose management protocols. However, most biosensors are not capable of simultaneous detection of the relative fraction of GA to HSA in a clinically relevant range. Here, we report an effective miniaturised biosensor architecture for simultaneous electrochemical detection of HSA and GA across relevant concentration ranges. We immobilise DNA aptamers specific for the detection of HSA and GA on gold nanoislands (Au NIs) decorated screen-printed carbon electrodes (SPCEs), and effectively passivate the residual surface sites. We achieve a dynamic detection range between 20 and 60 mg/mL for HSA and 1-40 mg/mL for GA in buffer solutions. The analytical utility of our HSA and GA biosensor architectures are validated in mice serum indicating immediate potential for clinical applications. Since HSA and GA have similar structures, we extensively assess our sensor specificity, observing high selectivity of the HSA and GA sensors against each other and other commonly present interfering molecules in blood such as glucose, glycine, ampicillin, and insulin. Additionally, we determine the glycation ratio, which is a crucial metric for assessing blood glucose management efficacy, in an extensive range representing healthy and poor blood glucose management profiles. These findings provide strong evidence for the clinical potential of our biosensor architecture for point-of-care and self-assessment of diabetes management protocols.


Asunto(s)
Técnicas Biosensibles , Diabetes Mellitus , Humanos , Animales , Ratones , Albúmina Sérica Humana/química , Albúmina Sérica , Albúmina Sérica Glicada , Glucemia , Productos Finales de Glicación Avanzada , Automonitorización de la Glucosa Sanguínea , Diabetes Mellitus/diagnóstico
7.
ACS Appl Mater Interfaces ; 16(1): 332-341, 2024 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-38111109

RESUMEN

The rise of antibiotic resistance in pathogenic bacteria requires new therapeutics to be developed. Several metallic nanoparticles such as those made from silver, copper, and zinc have shown significant antibacterial activity, in part due to metal ion leaching. Ga3+ containing compounds have also been shown to have antibacterial properties. Accordingly, it is estimated that metallic Ga droplets may be antibacterial, and some studies to date have confirmed this. Here, multiple concentrations of Ga droplets were tested against the antibiotic resistant Gram-positive bacteria methicillin-resistantStaphylococcus aureus (MRSA) and the Gram-negative bacteria Pseudomonas aeruginosa (P. aeruginosa) Despite a high concentration (2 mg/mL), Ga droplets had only modest antibacterial activity against both bacteria after 24 h of interaction. Finally, we demonstrated that Ga droplets were easily functionalized through a galvanic replacement reaction to develop antibacterial particles with copper and silver demonstrating a total detectable reduction of MRSA and >96% reduction ofP. aeruginosa. Altogether, these results contradict previous literature and show that Ga droplets demonstrate no antibacterial activity at concentrations comparable to those of conventional antibiotics and well-established antibacterial nanomaterials and only modest antibacterial activity at very high concentrations. However, we demonstrate that their antibacterial activity can be easily enhanced by functionalization.


Asunto(s)
Galio , Nanopartículas del Metal , Staphylococcus aureus Resistente a Meticilina , Plata/farmacología , Galio/farmacología , Cobre/farmacología , Antibacterianos/farmacología , Meticilina , Bacterias , Pruebas de Sensibilidad Microbiana , Pseudomonas aeruginosa
8.
Fluids Barriers CNS ; 20(1): 87, 2023 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-38017530

RESUMEN

The blood-brain barrier (BBB) is a selectively permeable membrane that separates the bloodstream from the brain. While useful for protecting neural tissue from harmful substances, brain-related diseases are difficult to treat due to this barrier, as it also limits the efficacy of drug delivery. To address this, promising new approaches for enhancing drug delivery are based on disrupting the BBB using physical means, including optical/photothermal therapy, electrical stimulation, and acoustic/mechanical stimulation. These physical mechanisms can temporarily and locally open the BBB, allowing drugs and other substances to enter. Focused ultrasound is particularly promising, with the ability to focus energies to targeted, deep-brain regions. In this review, we examine recent advances in physical approaches for temporary BBB disruption, describing their underlying mechanisms as well as evaluating the utility of these physical approaches with regard to their potential risks and limitations. While these methods have demonstrated efficacy in disrupting the BBB, their safety, comparative efficacy, and practicality for clinical use remain an ongoing topic of research.


Asunto(s)
Barrera Hematoencefálica , Encefalopatías , Humanos , Barrera Hematoencefálica/fisiología , Encéfalo , Sistemas de Liberación de Medicamentos/métodos
9.
ACS Appl Mater Interfaces ; 15(48): 56464-56477, 2023 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-37987616

RESUMEN

Nanoscale heterojunction networks are increasingly regarded as promising functional materials for a variety of optoelectronic and photocatalytic devices. Despite their superior charge-carrier separation efficiency, a major challenge remains in the optimization of their surface properties, with surface defects playing a major role in charge trapping and recombination. Here, we report the effective engineering of the photocatalytic properties of nanoscale heterojunction networks via deep ultraviolet photoactivation throughout their cross-section. For the first time, in-depth XPS analysis of very thick (∼10 µm) NixOy-ZnO films reveals localized p-n nanoheterojunctions with tunable oxygen vacancies (Vo) originating from both NixOy and ZnO nanocrystals. Optimizing the amount of oxygen vacancies leads to a 30-fold increase in the photochemoresistive response of these networks, enabling the detection of representative analyte concentrations down to 2 and 20 ppb at an optimal temperature of 150 °C and room temperature, respectively. Density functional theory calculations reveal that this performance enhancement is presumably due to an 80% increase in the analyte adsorption energy. This flexible nanofabrication approach in conjunction with straightforward vacancy control via photoactivation provides an effective strategy for engineering the photocatalytic activity of porous metal oxide semiconductor networks with applications in chemical sensors, photodetectors, and photoelectrochemical cells.

10.
Front Bioeng Biotechnol ; 11: 1185841, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37614632

RESUMEN

Damage to bone leads to pain and loss of movement in the musculoskeletal system. Although bone can regenerate, sometimes it is damaged beyond its innate capacity. Research interest is increasingly turning to tissue engineering (TE) processes to provide a clinical solution for bone defects. Despite the increasing biomimicry of tissue-engineered scaffolds, significant gaps remain in creating the complex bone substitutes, which include the biochemical and physical conditions required to recapitulate bone cells' natural growth, differentiation and maturation. Combining advanced biomaterials with new additive manufacturing technologies allows the development of 3D tissue, capable of forming cell aggregates and organoids based on natural and stimulated cues. Here, we provide an overview of the structure and mechanical properties of natural bone, the role of bone cells, the remodelling process, cytokines and signalling pathways, causes of bone defects and typical treatments and new TE strategies. We highlight processes of selecting biomaterials, cells and growth factors. Finally, we discuss innovative tissue-engineered models that have physiological and anatomical relevance for cancer treatments, injectable stimuli gels, and other therapeutic drug delivery systems. We also review current challenges and prospects of bone TE. Overall, this review serves as guide to understand and develop better tissue-engineered bone designs.

11.
Int J Biol Macromol ; 251: 126232, 2023 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-37562478

RESUMEN

Self-assembled peptide and polysaccharide nanogels are excellent candidates for bioactive delivery vectors. However, there are still significant challenges in the application of nanogels as delivery tools for bioactive elements. This study aims to deliver, and control the release of a hydrophobic bioactive flavonoid hesperidin. Using the self-assembling peptide (SAP) Fmoc-FRGDF, extracellular matrix mimicking nanofibrils were fabricated, which were decorated and bolstered with immunomodulatory polysaccharide strands of fucoidan and infused with hesperidin. The mechanical properties, secondary structure, and microscopic morphologies of the composite hydrogels were characterized using rheometer, FTIR, XRD, and TEM, etc. The encapsulation efficiency (EE) and release behavior of hesperidin were determined. Coassembly of the SAP with fucoidan improved the mechanical properties (from 9.54 Pa of Fmoc-FRGDF hydrogel to 7735 Pa of coassembly hydrogel at 6 mg/mL fucoidan concentration), formed thicker nanofibril bundles at 4 and 6 mg/mL fucoidan concentration, improved the EE of hesperidin from 72.86 % of Fmoc-FRGDF hydrogel to over 90 % of coassembly hydrogels, and showed effectively controlled release of hesperidin in vitro. Intriguingly, the first order kinetic model predicted an enhanced hydrogel retention and release of hesperidin. This study revealed a new approach for bioengineered nanogels that could be used to stabilize and release hydrophobic payloads.

12.
Gels ; 9(3)2023 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-36975648

RESUMEN

Bioinspired self-assembly is a bottom-up strategy enabling biologically sophisticated nanostructured biogels that can mimic natural tissue. Self-assembling peptides (SAPs), carefully designed, form signal-rich supramolecular nanostructures that intertwine to form a hydrogel material that can be used for a range of cell and tissue engineering scaffolds. Using the tools of nature, they are a versatile framework for the supply and presentation of important biological factors. Recent developments have shown promise for many applications such as therapeutic gene, drug and cell delivery and yet are stable enough for large-scale tissue engineering. This is due to their excellent programmability-features can be incorporated for innate biocompatibility, biodegradability, synthetic feasibility, biological functionality and responsiveness to external stimuli. SAPs can be used independently or combined with other (macro)molecules to recapitulate surprisingly complex biological functions in a simple framework. It is easy to accomplish localized delivery, since they can be injected and can deliver targeted and sustained effects. In this review, we discuss the categories of SAPs, applications for gene and drug delivery, and their inherent design challenges. We highlight selected applications from the literature and make suggestions to advance the field with SAPs as a simple, yet smart delivery platform for emerging BioMedTech applications.

13.
Int J Speech Lang Pathol ; 25(1): 9-14, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36476000

RESUMEN

PURPOSE: This invited commentary addresses the importance of the senses in human communication, outlines advances achieved with cochlear implants, and new research directions to improve neural prostheses. RESULT: In severely deaf people, cochlear implants restore speech understanding and enable children to achieve spoken language. Research in neural prostheses is advancing the restoration of hearing, vision, tactile senses, movement and the management of epilepsy. Bio-inspired stimulation strategies incorporating temporal and spatial characteristics of neural responses may deliver improved speech, vision and tactile perception using prostheses. To achieve stable long-term stimulation, chronic inflammation at the brain-electrode interface may be reduced using ROCK/Rho signalling pathway inhibitors and materials with brain-mimicking properties. CONCLUSION: This commentary paper addresses two Sustainable Development Goals: industry, innovation and infrastructure (SDG 9) and good health and well-being (SDG 3).


Asunto(s)
Implantación Coclear , Implantes Cocleares , Niño , Humanos , Desarrollo Sostenible , Habla
14.
JACS Au ; 2(11): 2481-2490, 2022 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-36465535

RESUMEN

Electrochemical biosensors allow the rapid, selective, and sensitive transduction of critical biological parameters into measurable signals. However, current electrochemical biosensors often fail to selectively and sensitively detect small molecules because of their small size and low molecular complexity. We have developed an electrochemical biosensing platform that harnesses the analyte-dependent conformational change of highly selective solute-binding proteins to amplify the redox signal generated by analyte binding. Using this platform, we constructed and characterized two biosensors that can sense leucine and glycine, respectively. We show that these biosensors can selectively and sensitively detect their targets over a wide range of concentrations-up to 7 orders of magnitude-and that the selectivity of these sensors can be readily altered by switching the bioreceptor's binding domain. Our work represents a new paradigm for the design of a family of modular electrochemical biosensors, where access to electrode surfaces can be controlled by protein conformational changes.

15.
Macromol Biosci ; 22(10): e2200222, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35906813

RESUMEN

Many materials have been engineered and commercialized as hemostatic agents. However, there is still a gap in the availability of hemostats that offer biocompatibility and biodegradability in combination with effective hemostatic properties. Cellulose nanofibers are investigated as hemostatic materials with most studies focusing on oxidized cellulose-derived hemostats. The recent studies demonstrate that by optimizing the morphological properties of nonoxidized cellulose nanofibers (CNFs) enhanced hemostasis is achieved. Herein, the hemostatic and wound-healing properties of CNFs with optimized morphology using two forms, gel, and sponge is investigated. In vitro thromboelastometry studies demonstrate that CNFs reduce clotting time by 68% (±SE 2%) and 88% (±SE 5%) in gel and sponge forms, respectively. In an in vivo murine liver injury model, CNFs significantly reduce blood loss by 38% (±SE 10%). The pH-neutral CNFs do not damage red blood cells, nor do they impede the proliferation of fibroblast or endothelial cells. Subcutaneously-implanted CNFs show a foreign body reaction resolving with the degradation of CNFs on histological examination and there is no scarring in the skin after 8 weeks. Demonstrating superior hemostatic performance in a variety of forms, as well as biocompatibility and biodegradability, CNFs hold significant potential for use in surgical and first-aid environments.


Asunto(s)
Celulosa Oxidada , Hemostáticos , Nanofibras , Animales , Celulosa/farmacología , Celulosa Oxidada/farmacología , Células Endoteliales , Hemostasis , Hemostáticos/farmacología , Ratones
16.
ACS Biomater Sci Eng ; 8(7): 2764-2797, 2022 07 11.
Artículo en Inglés | MEDLINE | ID: mdl-35696306

RESUMEN

Three-dimensional (3D) printing and 3D bioprinting are promising technologies for a broad range of healthcare applications from frontier regenerative medicine and tissue engineering therapies to pharmaceutical advancements yet must overcome the challenges of biocompatibility and resolution. Through comparison of traditional biofabrication methods with 3D (bio)printing, this review highlights the promise of 3D printing for the production of on-demand, personalized, and complex products that enhance the accessibility, effectiveness, and safety of drug therapies and delivery systems. In addition, this review describes the capacity of 3D bioprinting to fabricate patient-specific tissues and living cell systems (e.g., vascular networks, organs, muscles, and skeletal systems) as well as its applications in the delivery of cells and genes, microfluidics, and organ-on-chip constructs. This review summarizes how tailoring selected parameters (i.e., accurately selecting the appropriate printing method, materials, and printing parameters based on the desired application and behavior) can better facilitate the development of optimized 3D-printed products and how dynamic 4D-printed strategies (printing materials designed to change with time or stimulus) may be deployed to overcome many of the inherent limitations of conventional 3D-printed technologies. Comprehensive insights into a critical perspective of the future of 4D bioprinting, crucial requirements for 4D printing including the programmability of a material, multimaterial printing methods, and precise designs for meticulous transformations or even clinical applications are also given.


Asunto(s)
Bioimpresión , Medicina Regenerativa , Bioimpresión/métodos , Sector de Atención de Salud , Humanos , Impresión Tridimensional , Medicina Regenerativa/métodos , Tracción
17.
Adv Sci (Weinh) ; 9(23): e2201415, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35657076

RESUMEN

The spread of viral and bacterial pathogens mediated by contact with surfaces is a leading cause of infection worldwide. COVID-19 and the continuous rise of deaths associated with antibiotic-resistant bacteria highlight the need to impede surface-mediated transmission. A sprayable coating with an intrinsic ability to resist the uptake of bacteria and viruses from surfaces and droplets, such as those generated by sneezing or coughing, is reported. The coating also provides an effective microbicidal functionality against bacteria, providing a dual barrier against pathogen uptake and transmission. This antimicrobial functionality is fully preserved following scratching and other induced damage to its surface or 9 days of submersion in a highly concentrated suspension of bacteria. The coatings also register an 11-fold decrease in viral contamination compared to the noncoated surfaces.


Asunto(s)
Antiinfecciosos , COVID-19 , Virus , Antibacterianos/farmacología , Antiinfecciosos/farmacología , Bacterias , Humanos
18.
Gels ; 8(6)2022 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-35735676

RESUMEN

Metastatic tumours are complex ecosystems; a community of multiple cell types, including cancerous cells, fibroblasts, and immune cells that exist within a supportive and specific microenvironment. The interplay of these cells, together with tissue specific chemical, structural and temporal signals within a three-dimensional (3D) habitat, direct tumour cell behavior, a subtlety that can be easily lost in 2D tissue culture. Here, we investigate a significantly improved tool, consisting of a novel matrix of functionally programmed peptide sequences, self-assembled into a scaffold to enable the growth and the migration of multicellular lung tumour spheroids, as proof-of-concept. This 3D functional model aims to mimic the biological, chemical, and contextual cues of an in vivo tumor more closely than a typically used, unstructured hydrogel, allowing spatial and temporal activity modelling. This approach shows promise as a cancer model, enhancing current understandings of how tumours progress and spread over time within their microenvironment.

19.
Int J Mol Sci ; 23(9)2022 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-35563037

RESUMEN

Clinical studies have provided evidence for dopamine (DA) cell replacement therapy in Parkinson's Disease. However, grafts derived from foetal tissue or pluripotent stem cells (PSCs) remain heterogeneous, with a high proportion of non-dopaminergic cells, and display subthreshold reinnervation of target tissues, thereby highlighting the need to identify new strategies to improve graft outcomes. In recent work, Stromal Cell-Derived Factor-1 (SDF1), secreted from meninges, has been shown to exert many roles during ventral midbrain DA development and DA-directed differentiation of PSCs. Related, co-implantation of meningeal cells has been shown to improve neural graft outcomes, however, no direct evidence for the role of SDF1 in neural grafting has been shown. Due to the rapid degradation of SDF1 protein, here, we utilised a hydrogel to entrap the protein and sustain its delivery at the transplant site to assess the impact on DA progenitor differentiation, survival and plasticity. Hydrogels were fabricated from self-assembling peptides (SAP), presenting an epitope for laminin, the brain's main extracellular matrix protein, thereby providing cell adhesive support for the grafts and additional laminin-integrin signalling to influence cell fate. We show that SDF1 functionalised SAP hydrogels resulted in larger grafts, containing more DA neurons, increased A9 DA specification (the subpopulation of DA neurons responsible for motor function) and enhanced innervation. These findings demonstrate the capacity for functionalised, tissue-specific hydrogels to improve the composition of grafts targeted for neural repair.


Asunto(s)
Enfermedad de Parkinson , Animales , Biomimética , Diferenciación Celular/fisiología , Quimiocina CXCL12 , Dopamina/metabolismo , Neuronas Dopaminérgicas , Matriz Extracelular/metabolismo , Feto/metabolismo , Hidrogeles/química , Laminina , Enfermedad de Parkinson/terapia , Roedores/metabolismo
20.
Gels ; 8(4)2022 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-35448125

RESUMEN

The defined self-assembly of peptides (SAPs) into nanostructured bioactive hydrogels has great potential for repairing traumatic brain injuries, as they maintain a stable, homeostatic environment at an injury site, preventing further degeneration. They also present a bespoke platform to restore function via the naturalistic presentation of therapeutic proteins, such as stromal-cell-derived factor 1 (SDF-1), expressed by meningeal cells. A key challenge to the use of the SDF protein, however, is its rapid diffusion and degradation. Here, we engineered a homeostatic hydrogel produced by incorporating recombinant SDF-1 protein within a self-assembled peptide hydrogel to create a supportive milieu for transplanted cells. Our hydrogel can concomitantly deliver viable primary neural progenitor cells and sustained active SDF-1 to support the nascent graft, resulting in increased neuronal differentiation. Moreover, this homeostatic hydrogel can ensure a healthy and larger graft core without impeding neuronal fiber growth and innervation. These findings demonstrate the regenerative potential of these hydrogels to improve the integration of grafted cells to treat neural injuries and diseases.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA