Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Microorganisms ; 11(5)2023 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-37317248

RESUMEN

Modification of the genetic background and, in some cases, the introduction of targeted mutations can play a critical role in producing trait characteristics during the breeding of crops, livestock, and microorganisms. However, the question of how similar trait characteristics emerge when the same target mutation is introduced into different genetic backgrounds is unclear. In a previous study, we performed genome editing of AWA1, CAR1, MDE1, and FAS2 on the standard sake yeast strain Kyokai No. 7 to breed a sake yeast with multiple excellent brewing characteristics. By introducing the same targeted mutations into other pedigreed sake yeast strains, such as Kyokai strains No. 6, No. 9, and No. 10, we were able to create sake yeasts with the same excellent brewing characteristics. However, we found that other components of sake made by the genome-edited yeast strains did not change in the exact same way. For example, amino acid and isobutanol contents differed among the strain backgrounds. We also showed that changes in yeast cell morphology induced by the targeted mutations also differed depending on the strain backgrounds. The number of commonly changed morphological parameters was limited. Thus, divergent characteristics were produced by the targeted mutations in pedigreed sake yeast strains, suggesting a breeding strategy to generate a variety of sake yeasts with excellent brewing characteristics.

2.
Biosci Biotechnol Biochem ; 86(6): 724-729, 2022 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-35287170

RESUMEN

Terpene synthase (TS) from Bacillus alcalophilus (BalTS) is the only Class IB TS for which a 3D structure has been elucidated. Recently, geranyl-ß-phellandrene, a novel cyclic diterpene, was identified as a product of BalTS in addition to the acyclic ß-springene. In the present study, we have provided insight into the mechanism of geranyl-ß-phellandrene formation. Deuterium labeling experiments revealed that the compound is produced via a 1,3-hydride shift. In addition, nonenzymatic reactions using divalent metal ions were performed. The enzyme is essential for the geranyl-ß-phellandrene formation. Furthermore, BalTS variants targeting tyrosine residues enhanced the yield of geranyl-ß-phellandrene and the proportion of the compound of the total products. It was suggested that the expansion of the active site space may allow the conformation of the intermediates necessary for cyclization. The present study describes the first Class IB TSs to successfully alter product profiles while retaining high enzyme activity.


Asunto(s)
Transferasas Alquil y Aril , Catálisis , Monoterpenos Ciclohexánicos , Terpenos
3.
Cells ; 10(6)2021 05 24.
Artículo en Inglés | MEDLINE | ID: mdl-34073778

RESUMEN

Sake yeast is mostly diploid, so the introduction of recessive mutations to improve brewing characteristics requires considerable effort. To construct sake yeast with multiple excellent brewing characteristics, we used an evidence-based approach that exploits genome editing technology. Our breeding targeted the AWA1, CAR1, MDE1, and FAS2 genes. We introduced eight mutations into standard sake yeast to construct a non-foam-forming strain that makes sake without producing carcinogens or an unpleasant odor, while producing a sweet ginjo aroma. Small-scale fermentation tests showed that the desired sake could be brewed with our genome-edited strains. The existence of a few unexpected genetic perturbations introduced during breeding proved that genome editing technology is extremely effective for the serial breeding of sake yeast.


Asunto(s)
Fermentación/genética , Edición Génica , Mutación/genética , Proteínas de Saccharomyces cerevisiae/genética , Bebidas Alcohólicas/análisis , Diploidia , Odorantes/análisis , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
4.
ACS Chem Biol ; 15(6): 1517-1525, 2020 06 19.
Artículo en Inglés | MEDLINE | ID: mdl-32227910

RESUMEN

Terpene synthases (TS) are classified into two broad types, Class I and II, based on the chemical strategy for initial carbocation formation and motif sequences of the catalytic site. We have recently identified a new class of enzymes, Class IB, showing the acceptability of long (C20-C35) prenyl-diphosphates as substrates and no amino acid sequence homology with known TS. Conversion of long prenyl-diphosphates such as heptaprenyl-diphosphate (C35) is unusual and has never been reported for Class I and II enzymes. Therefore, the characterization of Class IB enzymes is crucial to understand the reaction mechanism of the extensive terpene synthesis. Here, we report the crystal structure bound with a substrate surrogate and biochemical analysis of a Class IB TS, using the enzyme from Bacillus alcalophilus (BalTS). The structure analysis revealed that the diphosphate part of the substrate is located around the two characteristic Asp-rich motifs, and the hydrophobic tail is accommodated in a unique hydrophobic long tunnel, where the C35 prenyl-diphosphate, the longest substrate of BalTS, can be accepted. Biochemical analyses of BalTS showed that the enzymatic property, such as Mg2+ dependency, is similar to those of Class I enzymes. In addition, a new cyclic terpene was identified from BalTS reaction products. Mutational analysis revealed that five of the six Asp residues in the Asp-rich motifs and two His residues are essential for the formation of the cyclic skeleton. These results provided a clue to consider the application of the unusual large terpene synthesis by Class IB enzymes.


Asunto(s)
Transferasas Alquil y Aril/metabolismo , Transferasas Alquil y Aril/química , Bacillus/enzimología , Espectroscopía de Resonancia Magnética con Carbono-13 , Cristalografía por Rayos X , Conformación Proteica , Espectroscopía de Protones por Resonancia Magnética , Espectrometría de Masa por Ionización de Electrospray , Especificidad por Sustrato
5.
Plant Physiol ; 178(2): 535-551, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30097469

RESUMEN

Rhododendron dauricum produces daurichromenic acid, an anti-HIV meroterpenoid, via oxidative cyclization of the farnesyl group of grifolic acid. The prenyltransferase (PT) that synthesizes grifolic acid is a farnesyltransferase in plant specialized metabolism. In this study, we demonstrated that the isoprenoid moiety of grifolic acid is derived from the 2-C-methyl-d-erythritol-4-phosphate pathway that takes place in plastids. We explored candidate sequences of plastid-localized PT homologs and identified a cDNA for this PT, RdPT1, which shares moderate sequence similarity with known aromatic PTs. RdPT1 is expressed exclusively in the glandular scales, where daurichromenic acid accumulates. In addition, the gene product was targeted to plastids in plant cells. The recombinant RdPT1 regiospecifically synthesized grifolic acid from orsellinic acid and farnesyl diphosphate, demonstrating that RdPT1 is the farnesyltransferase involved in daurichromenic acid biosynthesis. This enzyme strictly preferred orsellinic acid as a prenyl acceptor, whereas it had a relaxed specificity for prenyl donor structures, also accepting geranyl and geranylgeranyl diphosphates with modest efficiency to synthesize prenyl chain analogs of grifolic acid. Such a broad specificity is a unique catalytic feature of RdPT1 that is not shared among secondary metabolic aromatic PTs in plants. We discuss the unusual substrate preference of RdPT1 using a molecular modeling approach. The biochemical properties as well as the localization of RdPT1 suggest that this enzyme produces meroterpenoids in glandular scales cooperatively with previously identified daurichromenic acid synthase, probably for chemical defense on the surface of R. dauricum plants.


Asunto(s)
Fármacos Anti-VIH/metabolismo , Cromanos/metabolismo , Dimetilaliltranstransferasa/metabolismo , Farnesiltransferasa/metabolismo , VIH/efectos de los fármacos , Rhododendron/enzimología , Fármacos Anti-VIH/química , Cromanos/química , Clonación Molecular , Ciclización , Dimetilaliltranstransferasa/genética , Farnesiltransferasa/genética , Modelos Moleculares , Oxidación-Reducción , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plastidios/enzimología , Rhododendron/genética , Sesterterpenos/química , Sesterterpenos/metabolismo
6.
Chem Sci ; 9(15): 3754-3758, 2018 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-29780507

RESUMEN

Thousands of terpenes have been identified to date. However, only two classes of enzymes are known to be involved in their biosynthesis, and each class has characteristic amino-acid motifs. We recently identified a novel large-terpene (C25/C30/C35) synthase, which shares no motifs with known enzymes. To elucidate the molecular mechanism of this enzyme, we determined the crystal structure of a large-ß-prene synthase from B. alcalophilus (BalTS). Surprisingly, the overall structure of BalTS is similar to that of the α-domain of class I terpene synthases although their primary structures are totally different from each other. Two novel aspartate-rich motifs, DYLDNLxD and DY(F,L,W)IDxxED, are identified, and mutations of any one of the aspartates eliminate its enzymatic activity. The present work leads us to propose a new subclass of terpene synthases, class IB, which is probably responsible for large-terpene biosynthesis.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...