Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 2 de 2
1.
Clin Neurophysiol ; 132(5): 1185-1193, 2021 05.
Article En | MEDLINE | ID: mdl-33674213

OBJECTIVE: Perinatal arterial ischemic stroke (PAIS) is associated with epileptic spasms of West syndrome (WS) and long term Focal epilepsy (FE). The mechanism of epileptogenic network generation causing hypsarrhythmia of WS is unknown. We hypothesized that Modulation index (MI) [strength of phase-amplitude coupling] and Synchronization likelihood (SL) [degree of connectivity] could interrogate the epileptogenic network in hypsarrhythmia of WS secondary to PAIS. METHODS: We analyzed interictal scalp electroencephalography (EEG) in 10 WS and 11 FE patients with unilateral PAIS. MI between gamma (30-70 Hz) and slow waves (3-4 Hz) was calculated to measure phase-amplitude coupling. SL between electrode pairs was analyzed in 9-frequency bands (5-delta, theta, alpha, beta, gamma) to examine inter- and intra-hemispheric connectivity. RESULTS: MI was higher in affected hemispheres in WS (p = 0.006); no differences observed in FE. Inter-hemispheric SL of 3-delta, theta, alpha, beta, gamma bands was significantly higher in WS (p < 0.001). In WS, modified Z-Score of intra-hemispheric SL values in 3-delta, theta, alpha, beta and gamma in the affected hemispheres were significantly higher than those in the unaffected hemispheres (p < 0.001) as well as 0.5-4 Hz (p = 0.004). CONCLUSIONS: The significantly higher modulation in affected hemisphere and stronger inter- and intra-hemispheric connectivity generate hypsarrhythmia of WS secondary to PAIS. SIGNIFICANCE: Epileptogenic cortical-subcortical transcallosal networks from affected hemisphere post-PAIS provokes infantile spasms.


Brain Waves , Cortical Synchronization , Ischemic Stroke/physiopathology , Spasms, Infantile/physiopathology , Child , Child, Preschool , Female , Humans , Infant , Ischemic Stroke/complications , Male , Spasms, Infantile/etiology
2.
J Child Neurol ; 36(1): 38-47, 2021 01.
Article En | MEDLINE | ID: mdl-32838628

The purpose of this study is to investigate whether listening to music and white noise affects functional connectivity on scalp electroencephalography (EEG) in neonates in the neonatal intensive care unit.Nine neonates of ≥34 weeks' gestational age, who were already undergoing clinical continuous EEG monitoring in the neonatal intensive care unit, listened to lullaby-like music and white noise for 1 hour each separated by a 2-hour interval of no intervention. EEG segments during periods of music, white noise, and no intervention were band-pass filtered as delta (0.5-4 Hz), theta (4-8 Hz), lower alpha (8-10 Hz), upper alpha (10-13 Hz), beta (13-30 Hz), and gamma (30-45 Hz). Synchronization likelihood was used as a measure of connectivity between any 2 electrodes.In theta, lower alpha, and upper alpha frequency bands, the synchronization likelihood values yielded statistical significance with sound (music, white noise and no intervention) and with edge (between any 2 electrodes) factors. In theta, lower alpha, and upper alpha frequency bands, statistical significance was obtained between music and white noise (t = 3.12, 3.32, and 3.68, respectively; P < .017), and between white noise and no intervention (t = 4.51, 3.09, and 2.95, respectively, P < .017). However, there was no difference between music and no intervention.Although limited by a small sample size and the 1-time only auditory intervention, these preliminary results demonstrate the feasibility of EEG connectivity analyses even at bedside in neonates on continuous EEG monitoring in the neonatal intensive care unit. They also point to the possibility of detecting significant changes in functional connectivity related to the theta and alpha bands using auditory interventions.


Auditory Perception/physiology , Brain/physiology , Electroencephalography/methods , Intensive Care Units, Neonatal , Music , Noise , Cross-Over Studies , Humans , Infant, Newborn , Male , Prospective Studies
...