Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 76
1.
J Cell Sci ; 136(20)2023 10 15.
Article En | MEDLINE | ID: mdl-37732459

A characteristic of normal aging and age-related diseases is the remodeling of the cellular organization of a tissue through polyploid cell growth. Polyploidy arises from an increase in nuclear ploidy or the number of nuclei per cell. However, it is not known whether age-induced polyploidy is an adaption to stressors or a precursor to degeneration. Here, we find that abdominal epithelium of the adult fruit fly becomes polyploid with age through generation of multinucleated cells by cell fusion. Inhibition of fusion does not improve the lifespan of the fly, but does enhance its biomechanical fitness, a measure of the healthspan of the animal. Remarkably, Drosophila can maintain their epithelial tension and abdominal movements with age when cell fusion is inhibited. Epithelial cell fusion also appears to be dependent on a mechanical cue, as knockdown of Rho kinase, E-cadherin or α-catenin is sufficient to induce multinucleation in young animals. Interestingly, mutations in α-catenin in mice result in retina pigment epithelial multinucleation associated with macular disease. Therefore, we have discovered that polyploid cells arise by cell fusion and contribute to the decline in the biomechanical fitness of the animal with age.


Drosophila Proteins , Drosophila , Animals , Mice , Drosophila/genetics , alpha Catenin , Cell Fusion , Drosophila Proteins/genetics , Polyploidy
2.
Adv Exp Med Biol ; 1415: 27-36, 2023.
Article En | MEDLINE | ID: mdl-37440010

Age-related macular degeneration (AMD) is the leading cause of blindness in the global aging population. Familial aggregation and genome-wide association (GWA) studies have identified gene variants associated with AMD, implying a strong genetic contribution to AMD development. Two loci, on human Chr 1q31 and 10q26, respectively, represent the most influential of all genetic factors. While the role of CFH at Chr 1q31 is well established, uncertainty remains about the genes ARMS2 and HTRA1, at the Chr 10q26 locus. Since both genes are in strong linkage disequilibrium, assigning individual gene effects is difficult. In this chapter, we review current literature about ARMS2 and HTRA1 and their relevance to AMD risk. Future studies will be necessary to unravel the mechanisms by which they contribute to AMD.


Macular Degeneration , Proteins , Humans , Aged , Proteins/genetics , Serine Endopeptidases/genetics , Genome-Wide Association Study , High-Temperature Requirement A Serine Peptidase 1/genetics , Macular Degeneration/genetics , Linkage Disequilibrium , Polymorphism, Single Nucleotide , Complement Factor H/genetics , Genotype
3.
Int J Mol Sci ; 23(19)2022 Oct 09.
Article En | MEDLINE | ID: mdl-36233305

Congenital disorders of glycosylation (CDG) are a heterogenous group of primarily autosomal recessive mendelian diseases caused by disruptions in the synthesis of lipid-linked oligosaccharides and their transfer to proteins. CDGs usually affect multiple organ systems and vary in presentation, even within families. There is currently no cure, and treatment is aimed at ameliorating symptoms and improving quality of life. Here, we describe a chemically induced mouse mutant, tvrm76, with early-onset photoreceptor degeneration. The recessive mutation was mapped to Chromosome 9 and associated with a missense mutation in the Dpagt1 gene encoding UDP-N-acetyl-D-glucosamine:dolichyl-phosphate N-acetyl-D-glucosaminephosphotransferase (EC 2.7.8.15). The mutation is predicted to cause a substitution of aspartic acid with glycine at residue 166 of DPAGT1. This represents the first viable animal model of a Dpagt1 mutation and a novel phenotype for a CDG. The increased expression of Ddit3, and elevated levels of HSPA5 (BiP) suggest the presence of early-onset endoplasmic reticulum (ER) stress. These changes were associated with the induction of photoreceptor apoptosis in tvrm76 retinas. Mutations in human DPAGT1 cause myasthenic syndrome-13 and severe forms of a congenital disorder of glycosylation Type Ij. In contrast, Dpagt1tvrm76 homozygous mice present with congenital photoreceptor degeneration without overt muscle or muscular junction involvement. Our results suggest the possibility of DPAGT1 mutations in human patients that present primarily with retinitis pigmentosa, with little or no muscle disease. Variants in DPAGT1 should be considered when evaluating cases of non-syndromic retinal degeneration.


Congenital Disorders of Glycosylation , Retinal Diseases , Acetylglucosamine , Animals , Aspartic Acid/genetics , Congenital Disorders of Glycosylation/genetics , Glycine/genetics , Humans , Mice , Muscle Weakness , Mutation , Mutation, Missense , Phosphates , Quality of Life , Uridine Diphosphate
4.
Int J Mol Sci ; 23(18)2022 Sep 08.
Article En | MEDLINE | ID: mdl-36142331

Transcriptomic analysis of the mammalian retinal pigment epithelium (RPE) aims to identify cellular networks that influence ocular development, maintenance, function, and disease. However, available evidence points to RPE cell heterogeneity within native tissue, which adds complexity to global transcriptomic analysis. Here, to assess cell heterogeneity, we performed single-cell RNA sequencing of RPE cells from two young adult male C57BL/6J mice. Following quality control to ensure robust transcript identification limited to cell singlets, we detected 13,858 transcripts among 2667 and 2846 RPE cells. Dimensional reduction by principal component analysis and uniform manifold approximation and projection revealed six distinct cell populations. All clusters expressed transcripts typical of RPE cells; the smallest (C1, containing 1-2% of total cells) exhibited the hallmarks of stem and/or progenitor (SP) cells. Placing C1-6 along a pseudotime axis suggested a relative decrease in melanogenesis and SP gene expression and a corresponding increase in visual cycle gene expression upon RPE maturation. K-means clustering of all detected transcripts identified additional expression patterns that may advance the understanding of RPE SP cell maintenance and the evolution of cellular metabolic networks during development. This work provides new insights into the transcriptome of the mouse RPE and a baseline for identifying experimentally induced transcriptional changes in future studies of this tissue.


Gene Expression Profiling , Retinal Pigment Epithelium , Animals , Gene Expression Profiling/methods , Male , Mammals , Mice , Mice, Inbred C57BL , Retinal Pigment Epithelium/metabolism , Sequence Analysis, RNA , Transcriptome
5.
PLoS Genet ; 18(6): e1009798, 2022 06.
Article En | MEDLINE | ID: mdl-35675330

Mutations in the apicobasal polarity gene CRB1 lead to diverse retinal diseases, such as Leber congenital amaurosis, cone-rod dystrophy, retinitis pigmentosa (with and without Coats-like vasculopathy), foveal retinoschisis, macular dystrophy, and pigmented paravenous chorioretinal atrophy. Limited correlation between disease phenotypes and CRB1 alleles, and evidence that patients sharing the same alleles often present with different disease features, suggest that genetic modifiers contribute to clinical variation. Similarly, the retinal phenotype of mice bearing the Crb1 retinal degeneration 8 (rd8) allele varies with genetic background. Here, we initiated a sensitized chemical mutagenesis screen in B6.Cg-Crb1rd8/Pjn, a strain with a mild clinical presentation, to identify genetic modifiers that cause a more severe disease phenotype. Two models from this screen, Tvrm266 and Tvrm323, exhibited increased retinal dysplasia. Genetic mapping with high-throughput exome and candidate-gene sequencing identified causative mutations in Arhgef12 and Prkci, respectively. Epistasis analysis of both strains indicated that the increased dysplastic phenotype required homozygosity of the Crb1rd8 allele. Retinal dysplastic lesions in Tvrm266 mice were smaller and caused less photoreceptor degeneration than those in Tvrm323 mice, which developed an early, large diffuse lesion phenotype. At one month of age, Müller glia and microglia mislocalization at dysplastic lesions in both modifier strains was similar to that in B6.Cg-Crb1rd8/Pjn mice but photoreceptor cell mislocalization was more extensive. External limiting membrane disruption was comparable in Tvrm266 and B6.Cg-Crb1rd8/Pjn mice but milder in Tvrm323 mice. Immunohistological analysis of mice at postnatal day 0 indicated a normal distribution of mitotic cells in Tvrm266 and Tvrm323 mice, suggesting normal early development. Aberrant electroretinography responses were observed in both models but functional decline was significant only in Tvrm323 mice. These results identify Arhgef12 and Prkci as modifier genes that differentially shape Crb1-associated retinal disease, which may be relevant to understanding clinical variability and underlying disease mechanisms in humans.


Nerve Tissue Proteins , Retinal Dysplasia , Rho Guanine Nucleotide Exchange Factors , Animals , Disease Models, Animal , Eye Proteins/genetics , Eye Proteins/metabolism , Isoenzymes/genetics , Isoenzymes/metabolism , Membrane Proteins/genetics , Membrane Proteins/metabolism , Mice , Mice, Inbred C57BL , Mutation , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Protein Kinase C/genetics , Protein Kinase C/metabolism , Retina/metabolism , Retinal Degeneration/genetics , Retinal Degeneration/metabolism , Retinal Degeneration/pathology , Retinal Dysplasia/genetics , Retinal Dysplasia/metabolism , Retinal Dysplasia/pathology , Rho Guanine Nucleotide Exchange Factors/genetics , Rho Guanine Nucleotide Exchange Factors/metabolism
6.
PLoS One ; 17(3): e0254469, 2022.
Article En | MEDLINE | ID: mdl-35239671

Chediak-Higashi syndrome, caused by mutations in the Lysosome Trafficking Regulator (Lyst) gene, is a recessive hypopigmentation disorder characterized by albinism, neuropathies, neurodegeneration, and defective immune responses, with enlargement of lysosomes and lysosome-related organelles. Although recent studies have suggested that Lyst mutations impair the regulation of sizes of lysosome and lysosome-related organelle, the underlying pathogenic mechanism of Chediak-Higashi syndrome is still unclear. Here we show striking evidence that deficiency in LYST protein function leads to accumulation of photoreceptor outer segment phagosomes in retinal pigment epithelial cells, and reduces adhesion between photoreceptor outer segment and retinal pigment epithelial cells in a mouse model of Chediak-Higashi syndrome. In addition, we observe elevated levels of cathepsins, matrix metallopeptidase (MMP) 3 and oxidative stress markers in the retinal pigment epithelium of Lyst mutants. Previous reports showed that impaired degradation of photoreceptor outer segment phagosomes causes elevated oxidative stress, which could consequently lead to increases of cysteine cathepsins and MMPs in the extracellular matrix. Taken together, we conclude that the loss of LYST function causes accumulation of phagosomes in the retinal pigment epithelium and elevation of several extracellular matrix-remodeling proteases through oxidative stress, which may, in turn, reduce retinal adhesion. Our work reveals previously unreported pathogenic events in the retinal pigment epithelium caused by Lyst deficiency. The same pathogenic events may be conserved in other professional phagocytic cells, such as macrophages in the immune system, contributing to overall Chediak-Higashi syndrome pathology.


Peptide Hydrolases
7.
Int J Mol Sci ; 23(3)2022 Jan 30.
Article En | MEDLINE | ID: mdl-35163536

Adipor1tm1Dgen and Mfrprd6 mutant mice share similar eye disease characteristics. Previously, studies established a functional relationship of ADIPOR1 and MFRP proteins in maintaining retinal lipidome homeostasis and visual function. However, the independent and/or interactive contribution of both genes to similar disease phenotypes, including fundus spots, decreased axial length, and photoreceptor degeneration has yet to be examined. We performed a gene-interaction study where homozygous Adipor1tm1Dgen and Mfrprd6 mice were bred together and the resulting doubly heterozygous F1 offspring were intercrossed to produce 210 F2 progeny. Four-month-old mice from all nine genotypic combinations obtained in the F2 generation were assessed for white spots by fundus photo documentation, for axial length by caliper measurements, and for photoreceptor degeneration by histology. Two-way factorial ANOVA was performed to study individual as well as gene interaction effects on each phenotype. Here, we report the first observation of reduced axial length in Adipor1tmlDgen homozygotes. We show that while Adipor1 and Mfrp interact to affect spotting and degeneration, they act independently to control axial length, highlighting the complex functional association between these two genes. Further examination of the molecular basis of this interaction may help in uncovering mechanisms by which these genes perturb ocular homeostasis.


Eye Proteins/genetics , Membrane Proteins/genetics , Mutation , Receptors, Adiponectin/genetics , Retinal Degeneration/pathology , Animals , Breeding , Disease Models, Animal , Epistasis, Genetic , Eye Proteins/metabolism , Homozygote , Membrane Proteins/metabolism , Mice , Ophthalmoscopy , Phenotype , Receptors, Adiponectin/metabolism , Retinal Degeneration/genetics , Retinal Degeneration/metabolism
8.
Int J Mol Sci ; 23(4)2022 Feb 17.
Article En | MEDLINE | ID: mdl-35216333

Fluid and solute transporters of the retinal pigment epithelium (RPE) are core components of the outer blood-retinal barrier. Characterizing these transporters and their role in retinal homeostasis may provide insights into ocular function and disease. Here, we describe RPE defects in tvrm77 mice, which exhibit hypopigmented patches in the central retina. Mapping and nucleotide sequencing of tvrm77 mice revealed a disrupted 5' splice donor sequence in Slc4a5, a sodium bicarbonate cotransporter gene. Slc4a5 expression was reduced 19.7-fold in tvrm77 RPE relative to controls, and alternative splice variants were detected. SLC4A5 was localized to the Golgi apparatus of cultured human RPE cells and in apical and basal membranes. Fundus imaging, optical coherence tomography, microscopy, and electroretinography (ERG) of tvrm77 mice revealed retinal detachment, hypopigmented patches corresponding to neovascular lesions, and retinal folds. Detachment worsened and outer nuclear layer thickness decreased with age. ERG a- and b-wave response amplitudes were initially normal but declined in older mice. The direct current ERG fast oscillation and light peak were reduced in amplitude at all ages, whereas other RPE-associated responses were unaffected. These results link a new Slc4a5 mutation to subretinal fluid accumulation and altered light-evoked RPE electrophysiological responses, suggesting that SLC4A5 functions at the outer blood-retinal barrier.


Mutation/genetics , RNA Splicing/genetics , Retina/pathology , Retinal Detachment/genetics , Retinal Pigment Epithelium/pathology , Sodium-Bicarbonate Symporters/genetics , Animals , Cells, Cultured , Disease Models, Animal , Female , Humans , Male , Mice , Mice, Inbred C57BL , Retinal Detachment/pathology , Tomography, Optical Coherence/methods
9.
Cell Death Dis ; 12(11): 1017, 2021 10 29.
Article En | MEDLINE | ID: mdl-34716303

Glaucoma is a leading cause of blindness, affecting 70 million people worldwide. Owing to the similarity in anatomy and physiology between human and mouse eyes and the ability to genetically manipulate mice, mouse models are an invaluable resource for studying mechanisms underlying disease phenotypes and for developing therapeutic strategies. Here, we report the discovery of a new mouse model of early-onset glaucoma that bears a transversion substitution c. G344T, which results in a missense mutation, p. R115L in PITX2. The mutation causes an elevation in intraocular pressure (IOP) and progressive death of retinal ganglion cells (RGC). These ocular phenotypes recapitulate features of pathologies observed in human glaucoma. Increased oxidative stress was evident in the inner retina. We demonstrate that the mutant PITX2 protein was not capable of binding to Nuclear factor-like 2 (NRF2), which regulates Pitx2 expression and nuclear localization, and to YAP1, which is necessary for co-initiation of transcription of downstream targets. PITX2-mediated transcription of several antioxidant genes were also impaired. Treatment with N-Acetyl-L-cysteine exerted a profound neuroprotective effect on glaucoma-associated neuropathies, presumably through inhibition of oxidative stress. Our study demonstrates that a disruption of PITX2 leads to glaucoma optic pathogenesis and provides a novel early-onset glaucoma model that will enable elucidation of mechanisms underlying the disease as well as to serve as a resource to test new therapeutic strategies.


Glaucoma/genetics , Glaucoma/metabolism , Homeodomain Proteins/genetics , Homeodomain Proteins/metabolism , Mutation, Missense , NF-E2-Related Factor 2/metabolism , Signal Transduction/genetics , Transcription Factors/genetics , Transcription Factors/metabolism , YAP-Signaling Proteins/metabolism , Animals , Apoptosis/genetics , Disease Models, Animal , Female , HEK293 Cells , Humans , Intraocular Pressure , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Phenotype , Retinal Ganglion Cells/metabolism , Transfection , Homeobox Protein PITX2
10.
Cells ; 9(4)2020 04 10.
Article En | MEDLINE | ID: mdl-32290105

Inherited retinal degeneration (RD) leads to the impairment or loss of vision in millions of individuals worldwide, most frequently due to the loss of photoreceptor (PR) cells. Animal models, particularly the laboratory mouse, have been used to understand the pathogenic mechanisms that underlie PR cell loss and to explore therapies that may prevent, delay, or reverse RD. Here, we reviewed entries in the Mouse Genome Informatics and PubMed databases to compile a comprehensive list of monogenic mouse models in which PR cell loss is demonstrated. The progression of PR cell loss with postnatal age was documented in mutant alleles of genes grouped by biological function. As anticipated, a wide range in the onset and rate of cell loss was observed among the reported models. The analysis underscored relationships between RD genes and ciliary function, transcription-coupled DNA damage repair, and cellular chloride homeostasis. Comparing the mouse gene list to human RD genes identified in the RetNet database revealed that mouse models are available for 40% of the known human diseases, suggesting opportunities for future research. This work may provide insight into the molecular players and pathways through which PR degenerative disease occurs and may be useful for planning translational studies.


Disease Models, Animal , Photoreceptor Cells/metabolism , Retinal Degeneration/genetics , Retinal Degeneration/metabolism , Animals , Humans , Mice , Retinal Degeneration/pathology , Retinitis Pigmentosa/genetics , Retinitis Pigmentosa/metabolism , Retinitis Pigmentosa/pathology
11.
Invest Ophthalmol Vis Sci ; 59(12): 5127-5139, 2018 10 01.
Article En | MEDLINE | ID: mdl-30372741

Purpose: To determine the molecular basis of lesion development in a murine model of spontaneous retinal vascularization, rnv3 (retinal vascularization 3, aka JR5558). Methods: Disease progression of rnv3 was examined in longitudinal studies by clinical evaluation, electroretinography (ERG) and light microscopy analyses. The chromosomal position for the recessive rnv3 mutation was determined by DNA pooling and genome-wide linkage analysis. The causative mutation was discovered by comparison of whole exome sequences of rnv3 mutant and wild-type (WT) controls. In order to confirm the causative mutation, transcription activator-like effector nuclease (TALEN)-mediated oligonucleotide directed repair (ODR) was utilized to correct the mutant allele. Phenotypic correction was assessed by fundus imaging and optical coherence tomography of live mice. Results: rnv3 exhibits early-onset, multifocal depigmented retinal lesions observable by fundus examination starting at 18 days of age. The retinal lesions are associated with fluorescein leakage around 25 days of age, with peak leakage at about 4 weeks of age. ERG responses deteriorate as rnv3 mutants age, concomitant with progressive photoreceptor disruption and loss that is observable by histology. Genetic analysis localized rnv3 to mouse chromosome (Chr) 1. By high throughput sequencing of a whole exome capture library of a rnv3/rnv3 mutant and subsequent sequence analysis, a single base deletion (del) in the Crb1 [crumbs family member 1] gene, which was previously reported to cause retinal degeneration 8, was identified. The TALEN-mediated ODR rescued the posterior segment vascularization phenotype; heterozygous Crb1rd8+em1Boc/Crb1rd8 and homozygous Crb1rd8+em1Boc/Crb1rd8+em1Boc mice showed a normal retinal phenotype. Additionally, six novel disruptions of Crb1 that were generated through aberrant non-homologous end joining induced by TALEN exhibited variable levels of vascularization, suggesting allelic effects. Conclusions: The rnv3 model and the models of six novel disruptions of Crb1 are all reliable, novel mouse models for the study of both early and late events associated with posterior segment vascularization and can also be used to test the effects of pharmacological targets for treating human ocular vascular disorders. Further study of these models may provide a greater understanding about how different Crb1 alleles result in aberrant angiogenesis.


Disease Models, Animal , Mutation , Nerve Tissue Proteins/genetics , Posterior Eye Segment/pathology , Retina/physiopathology , Retinal Neovascularization/genetics , Alleles , Animals , DNA Mutational Analysis , Electroretinography , Female , Follow-Up Studies , Genetic Linkage , Male , Mice , Mice, Inbred C57BL , Phenotype , Retinal Neovascularization/physiopathology , Transcription Activator-Like Effector Nucleases , Exome Sequencing
12.
Hum Mol Genet ; 27(19): 3340-3352, 2018 10 01.
Article En | MEDLINE | ID: mdl-29947801

Photoreceptor dysplasia, characterized by formation of folds and (pseudo-)rosettes in the outer retina, is associated with loss of functional nuclear receptor subfamily 2 group E member 3 (NR2E3) and neural retina leucine-zipper (NRL) in both humans and mice. A sensitized chemical mutagenesis study to identify genetic modifiers that suppress photoreceptor dysplasia in Nr2e3rd7mutant mice identified line Tvrm222, which exhibits a normal fundus appearance in the presence of the rd7 mutation. The Tvrm222 modifier of Nr2e3rd7/rd7 was localized to Chromosome 6 and identified as a missense mutation in the FERM domain containing 4B (Frmd4b) gene. The variant is predicted to cause the substitution of a serine residue 938 with proline (S938P). The Frmd4bTvrm222 allele was also found to suppress outer nuclear layer (ONL) rosettes in Nrl-/- mice. Fragmentation of the external limiting membrane (ELM), normally observed in rd7 and Nrl-/-mouse retinas, was absent in the presence of the Frmd4bTvrm222 allele. FRMD4B, a binding partner of cytohesin 3, is proposed to participate in cell junction remodeling. Its biological function in photoreceptor dysplasia has not been previously examined. In vitro experiments showed that the FRMD4B938P variant fails to be efficiently recruited to the cell surface upon insulin stimulation. In addition, we found a reduction in protein kinase B phosphorylation and increased levels of cell junction proteins, Catenin beta 1 and tight junction protein 1, associated with the cell membrane in Tvrm222 retinas. Taken together, this study reveals a critical role of FRMD4B in maintaining ELM integrity and in rescuing morphological abnormalities of the ONL in photoreceptor dysplasia.


Adaptor Proteins, Signal Transducing/genetics , Basic-Leucine Zipper Transcription Factors/genetics , Eye Diseases, Hereditary/genetics , Eye Proteins/genetics , Orphan Nuclear Receptors/genetics , Retinal Degeneration/genetics , Vision Disorders/genetics , Animals , Eye Diseases, Hereditary/metabolism , Eye Diseases, Hereditary/pathology , Fundus Oculi , Humans , Mice , Mutation, Missense , Protein Domains/genetics , Retina/growth & development , Retina/pathology , Retinal Cone Photoreceptor Cells/metabolism , Retinal Cone Photoreceptor Cells/pathology , Retinal Degeneration/metabolism , Retinal Degeneration/pathology , Retinal Photoreceptor Cell Outer Segment , Vision Disorders/metabolism , Vision Disorders/pathology
13.
Adv Exp Med Biol ; 1074: 545-551, 2018.
Article En | MEDLINE | ID: mdl-29721986

The formation of solid tissues is not a simple aggregation of individual cells but rather an ordered assembly of cells connected by junctions. These junctions provide a diffusion barrier as well as mechanical support and a conduit for signalling changes in the environment to the cells. Cell junctions are functionally categorized as occluding (e.g. tight junctions, TJs), anchoring (e.g. adherens junctions, AJs) and communicating junctions (e.g. gap junctions). Each type of the cell junction is formed by protein complexes with extracellular domains and/or intracellular domains, which bind partners that provide scaffolding and signalling components. Cell junctions are ubiquitously expressed in multiple tissues and organs, including the retina. In the retina, their biological impact is not limited to regulating tissue growth and development. Disruption of the complexes mediates both congenital and postnatal pathogenesis. In this review, we will focus on cell junctions, specifically AJs and TJs in the external limiting membrane, in order to articulate their influence on pathophysiology of the retina.


Adherens Junctions/physiology , Retina/ultrastructure , Retinal Diseases/physiopathology , Tight Junctions/physiology , Adherens Junctions/ultrastructure , Cell Communication , Eye Proteins/genetics , Eye Proteins/physiology , Gap Junctions/physiology , Humans , Membrane Proteins/deficiency , Membrane Proteins/genetics , Membrane Proteins/physiology , Nerve Tissue Proteins/deficiency , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/physiology , Retina/physiology , Retina/physiopathology , Retinal Diseases/diagnosis , Retinal Diseases/pathology , Retinal Diseases/therapy , Tomography, Optical Coherence
14.
PLoS One ; 12(8): e0183837, 2017.
Article En | MEDLINE | ID: mdl-28859131

Mouse models provide a valuable tool for exploring pathogenic mechanisms underlying inherited human disease. Here, we describe seven mouse models identified through the Translational Vision Research Models (TVRM) program, each carrying a new allele of a gene previously linked to retinal developmental and/or degenerative disease. The mutations include four alleles of three genes linked to human nonsyndromic ocular diseases (Aipl1tvrm119, Aipl1tvrm127, Rpgrip1tvrm111, RhoTvrm334) and three alleles of genes associated with human syndromic diseases that exhibit ocular phentoypes (Alms1tvrm102, Clcn2nmf289, Fkrptvrm53). Phenotypic characterization of each model is provided in the context of existing literature, in some cases refining our current understanding of specific disease attributes. These murine models, on fixed genetic backgrounds, are available for distribution upon request and may be useful for understanding the function of the gene in the retina, the pathological mechanisms induced by its disruption, and for testing experimental approaches to treat the corresponding human ocular diseases.


Eye Diseases/genetics , Retinal Degeneration/genetics , Translational Research, Biomedical , Vision, Ocular/genetics , Alleles , Animals , CLC-2 Chloride Channels , Cell Cycle Proteins , Chloride Channels/genetics , Cytoskeletal Proteins , DNA-Binding Proteins/genetics , Disease Models, Animal , Eye Diseases/pathology , Humans , Mice , Mutation , Pentosyltransferases , Proteins/genetics , Retina/pathology , Retinal Degeneration/pathology , Transferases
15.
Mol Vis ; 23: 140-148, 2017.
Article En | MEDLINE | ID: mdl-28356706

PURPOSE: Familial exudative vitreoretinopathy (FEVR) is caused by mutations in the genes encoding low-density lipoprotein receptor-related protein (LRP5) or its interacting partners, namely frizzled class receptor 4 (FZD4) and norrin cystine knot growth factor (NDP). Mouse models for Lrp5, Fzd4, and Ndp have proven to be important for understanding the retinal pathophysiology underlying FEVR and systemic abnormalities related to defective Wnt signaling. Here, we report a new mouse mutant, tvrm111B, which was identified by electroretinogram (ERG) screening of mice generated in the Jackson Laboratory Translational Vision Research Models (TVRM) mutagenesis program. METHODS: ERGs were used to examine outer retinal physiology. The retinal vasculature was examined by in vivo retinal imaging, as well as by histology and immunohistochemistry. The tvrm111B locus was identified by genetic mapping of mice generated in a cross to DBA/2J, and subsequent sequencing analysis. Gene expression was examined by real-time PCR of retinal RNA. Bone mineral density (BMD) was examined by peripheral dual-energy X-ray absorptiometry. RESULTS: The tvrm111B allele is inherited as an autosomal recessive trait. Genetic mapping of the decreased ERG b-wave phenotype of tvrm111B mice localized the mutation to a region on chromosome 19 that included Lrp5. Sequencing of Lrp5 identified the insertion of a cytosine (c.4724_4725insC), which is predicted to cause a frameshift that disrupts the last three of five conserved PPPSPxS motifs in the cytoplasmic domain of LRP5, culminating in a premature termination. In addition to a reduced ERG b-wave, Lrp5tvrm111B homozygotes have low BMD and abnormal features of the retinal vasculature that have been reported previously in Lrp5 mutant mice, including persistent hyaloid vessels, leakage on fluorescein angiography, and an absence of the deep retinal capillary bed. CONCLUSIONS: The phenotype of the Lrp5tvrm111B mutant includes abnormalities of the retinal vasculature and of BMD. This model may be a useful resource to further our understanding of the biological role of LRP5 and to evaluate experimental therapies for FEVR or other conditions associated with LRP5 dysfunction.


Bone Density , Low Density Lipoprotein Receptor-Related Protein-5/genetics , Mutagenesis/genetics , Mutation/genetics , Retinal Vessels/abnormalities , Retinal Vessels/physiopathology , Animals , Electroretinography , Gene Expression Regulation , Homozygote , Male , Mice, Inbred C57BL , Organ Size/genetics , Phenotype , Retinal Vessels/diagnostic imaging , Retinal Vessels/pathology , Wnt Signaling Pathway/genetics
16.
Am J Pathol ; 186(7): 1925-1938, 2016 07.
Article En | MEDLINE | ID: mdl-27207593

The nicotinamide nucleotide adenylyltransferase 1 (NMNAT1) enzyme is essential for regenerating the nuclear pool of NAD(+) in all nucleated cells in the body, and mounting evidence also suggests that it has a separate role in neuroprotection. Recently, mutations in the NMNAT1 gene were associated with Leber congenital amaurosis, a severe retinal degenerative disease that causes blindness during infancy. Availability of a reliable mammalian model of NMNAT1-Leber congenital amaurosis would assist in determining the mechanisms through which disruptions in NMNAT1 lead to retinal cell degeneration and would provide a resource for testing treatment options. To this end, we identified two separate N-ethyl-N-nitrosourea-generated mouse lines that harbor either a p.V9M or a p.D243G mutation. Both mouse models recapitulate key aspects of the human disease and confirm the pathogenicity of mutant NMNAT1. Homozygous Nmnat1 mutant mice develop a rapidly progressing chorioretinal disease that begins with photoreceptor degeneration and includes attenuation of the retinal vasculature, optic atrophy, and retinal pigment epithelium loss. Retinal function deteriorates in both mouse lines, and, in the more rapidly progressing homozygous Nmnat1(V9M) mutant mice, the electroretinogram becomes undetectable and the pupillary light response weakens. These mouse models offer an opportunity for investigating the cellular mechanisms underlying disease pathogenesis, evaluating potential therapies for NMNAT1-Leber congenital amaurosis, and conducting in situ studies on NMNAT1 function and NAD(+) metabolism.


Disease Models, Animal , Leber Congenital Amaurosis/genetics , Leber Congenital Amaurosis/physiopathology , Nicotinamide-Nucleotide Adenylyltransferase/genetics , Animals , Genotype , Humans , Mice , Mice, Mutant Strains , Polymerase Chain Reaction
17.
Methods Mol Biol ; 1438: 395-415, 2016.
Article En | MEDLINE | ID: mdl-27150100

Noninvasive live imaging has been used extensively for ocular phenotyping in mouse vision research. Bright-field imaging and optical coherence tomography (OCT) are two methods that are particularly useful for assessing the posterior mouse eye (fundus), including the retina, retinal pigment epithelium, and choroid, and are widely applied due to the commercial availability of sophisticated instruments and software. Here, we provide a guide to using these approaches with an emphasis on post-acquisition image processing using Fiji, a bundled version of the Java-based public domain software ImageJ. A bright-field fundus imaging protocol is described for acquisition of multi-frame videos, followed by image registration to reduce motion artifacts, averaging to reduce noise, shading correction to compensate for uneven illumination, filtering to improve image detail, and rotation to adjust orientation. An OCT imaging protocol is described for acquiring replicate volume scans, with subsequent registration and averaging to yield three-dimensional datasets that show reduced motion artifacts and enhanced detail. The Fiji algorithms used in these protocols are designed for batch processing and are freely available. The image acquisition and processing approaches described here may facilitate quantitative phenotyping of the mouse eye in drug discovery, mutagenesis screening, and the functional cataloging of mouse genes by individual laboratories and large-scale projects, such as the Knockout Mouse Phenotyping Project and International Mouse Phenotyping Consortium.


Image Processing, Computer-Assisted/instrumentation , Retina/diagnostic imaging , Tomography, Optical Coherence/methods , Algorithms , Animals , Fundus Oculi , Mice , Mice, Knockout , Models, Animal , Software , Tomography, Optical Coherence/instrumentation
18.
Invest Ophthalmol Vis Sci ; 57(3): 877-88, 2016 Mar.
Article En | MEDLINE | ID: mdl-26978024

PURPOSE: Retinal detachments (RDs), a separation of the light-sensitive tissue of the retina from its supporting layers in the posterior eye, isolate retinal cells from their normal supply of nourishment and can lead to their deterioration and death. We identified a new, spontaneous murine model of exudative retinal detachment, nm3342 (new mutant 3342, also referred to as rpea1: retinal pigment epithelium atrophy 1), which we characterize herein. METHODS: The chromosomal position for the recessive nm3342 mutation was determined by DNA pooling, and the causative mutation was discovered by comparison of whole exome sequences of mutant and wild-type controls. The effects of the mutation were examined in longitudinal studies by clinical evaluation, electroretinography (ERG), light microscopy, and marker and Western blot analyses. RESULTS: New mutant 3342, nm3342, also referred to as rpea1, causes an early-onset, complete RD on the ABJ/LeJ strain background, and central exudative RD and late-onset RPE atrophy on the C57BL/6J background. The ERG responses were normal at 2 months of age but deteriorate as mice age, concomitant with progressive pan-retinal photoreceptor loss. Genetic analysis localized rpea1 to mouse chromosome 2. By high-throughput sequencing of a whole exome capture library of an rpea1/rpea1 mutant and subsequent sequence analysis, a splice donor site mutation in the Prkcq (protein kinase C, θ) gene, was identified, leading to a skipping of exon 6, frame shift and premature termination. Homozygotes with a Prkcq-targeted null allele (Prkcqtm1Litt) have similar retinal phenotypes as homozygous rpea1 mice. We determined that the PKCθ protein is abundant in the lateral surfaces of RPE cells and colocalizes with both tight and adherens junction proteins. Phalloidin-stained RPE whole mounts showed abnormal RPE cell morphology with aberrant actin ring formation. CONCLUSIONS: The homozygous Prkcqrpea1 and the null Prkcqtm1Litt mutants are reliable novel mouse models of RD and can also be used to study the effects of the disruption of PRKCQ (PKCθ) signaling in RPE cells.


DNA/genetics , Disease Models, Animal , Mutation , Protein Kinase C-delta/genetics , Retinal Detachment/pathology , Retinal Pigment Epithelium/pathology , Animals , Atrophy , Blotting, Western , DNA Mutational Analysis , Electroretinography , Mice , Mice, Inbred C57BL , Mice, Mutant Strains , Photoreceptor Cells, Vertebrate , Protein Kinase C-delta/metabolism , Retinal Detachment/enzymology , Retinal Detachment/genetics , Retinal Pigment Epithelium/enzymology , Retinal Pigment Epithelium/physiopathology , Tomography, Optical Coherence
19.
Nat Genet ; 48(2): 144-51, 2016 Feb.
Article En | MEDLINE | ID: mdl-26691986

Butterfly-shaped pigment dystrophy is an eye disease characterized by lesions in the macula that can resemble the wings of a butterfly. Here we report the identification of heterozygous missense mutations in the CTNNA1 gene (encoding α-catenin 1) in three families with butterfly-shaped pigment dystrophy. In addition, we identified a Ctnna1 missense mutation in a chemically induced mouse mutant, tvrm5. Parallel clinical phenotypes were observed in the retinal pigment epithelium (RPE) of individuals with butterfly-shaped pigment dystrophy and in tvrm5 mice, including pigmentary abnormalities, focal thickening and elevated lesions, and decreased light-activated responses. Morphological studies in tvrm5 mice demonstrated increased cell shedding and the presence of large multinucleated RPE cells, suggesting defects in intercellular adhesion and cytokinesis. This study identifies CTNNA1 gene variants as a cause of macular dystrophy, indicates that CTNNA1 is involved in maintaining RPE integrity and suggests that other components that participate in intercellular adhesion may be implicated in macular disease.


Mutation, Missense , Retinal Dystrophies/genetics , Retinal Pigment Epithelium/pathology , alpha Catenin/genetics , Animals , Female , Humans , Light , Male , Mice , Mice, Mutant Strains , Pedigree , Retinal Dystrophies/pathology
20.
Adv Exp Med Biol ; 854: 177-83, 2016.
Article En | MEDLINE | ID: mdl-26427409

Mouse models provide important resources for many areas of vision research, pertaining to retinal development, retinal function and retinal disease. The Translational Vision Research Models (TVRM) program uses chemical mutagenesis to generate new mouse models for vision research. In this chapter, we report the identification of mouse models for Grm1, Grk1 and Lrit3. Each of these is characterized by a primary defect in the electroretinogram. All are available without restriction to the research community.


Genetic Predisposition to Disease/genetics , Mutation , Retina/metabolism , Retinal Diseases/genetics , Alleles , Animals , Disease Models, Animal , Electroretinography , Eye Diseases/diagnosis , Eye Diseases/genetics , Eye Diseases/physiopathology , G-Protein-Coupled Receptor Kinase 1/genetics , Genetic Testing/methods , Humans , Male , Membrane Proteins/genetics , Mice, Inbred C57BL , Mice, Inbred DBA , Mutagenesis , Receptors, Metabotropic Glutamate/genetics , Retina/pathology , Retina/physiopathology , Retinal Diseases/diagnosis , Translational Research, Biomedical/methods , Vision, Ocular/genetics , Vision, Ocular/physiology
...