Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 87
Filtrar
1.
Chem Commun (Camb) ; 60(76): 10544-10547, 2024 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-39229730

RESUMEN

Oxidized carbon materials have abundant surface functional groups and customizable properties, making them an excellent platform for generating radicals. Unlike reactive oxygen species such as hydroxide or superoxide radicals that have been reported previously, oxidized carbon also produces stable carbon radicals under photo-irradiation. This has been confirmed through electron spin resonance. Among the various oxidized carbon materials synthesized, graphene oxide shows the largest number of carbon radicals when exposed to blue LED light. The light absorption capacity, high surface area, and unique structural characteristics of oxidized carbon materials offer a unique function for radical-mediated oxidative reactions.

2.
ACS Omega ; 9(34): 36114-36121, 2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39220498

RESUMEN

Designing a cheap, competent, and durable catalyst for the oxygen evolution reaction (OER) is exceedingly necessary for generating oxygen through a water-splitting reaction. In this project, we have designed a ZIF-67-originated molybdenum-doped cobalt phosphide (CoP) using a simplistic dissolution-regrowth method using Na2MoO4 and a subsequent phosphidation process. This leads to the formation of an exceptional hollow nanocage morphology that is useful for enhanced catalytic activity. Metal-organic frameworks, especially ZIF-67, can be used both as a template and as a metal (cobalt) precursor. Molybdenum-doped CoP was fabricated through a two-step synthesis process, and the fabricated Mo-doped CoP showed excellent catalytic activity during the OER with a lower value of overpotential. Furthermore, the effect of the Mo amount on the catalytic activity has been explored. The best catalyst (CoMoP-2) showed an onset potential of around 1.49 V at 10 mA cm-2 to give rise to a Tafel slope of 62.1 mV dec-1. The improved catalytic activity can be attributed to the increased porosity and surface area of the resultant catalyst.

3.
Chempluschem ; : e202400449, 2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-39109458

RESUMEN

A magnetically responsive photonic crystal of colloidal nanosheets can exhibit a controllable structural color, offering diverse potential applications. In this study, we systematically investigated how the lateral sizes of graphene oxide (GO) nanosheets affect their magnetic responsiveness in a photonic system. Contrary to the prediction that larger lateral sizes of nanosheets would be more responsive to an applied magnetic field based on the magnetic energy of anisotropic materials, we discovered that GO nanosheets with larger lateral sizes in the photonic system scarcely responded to a 12 T magnetic field. The lack of magnetic response may be due to the strongly restricted rotational motion of GO nanosheets by mutual electrostatic forces. In contrast, GO nanosheets with medium lateral sizes readily responded to the 12 T magnetic field, forming a uniaxially oriented structure that resulted in a vivid structural color. However, smaller GO nanosheets displayed a less vivid structural color, possibly because of less structural ordering of GO nanosheets. Finally, we found that the photonic crystal of GO nanosheets with optimized lateral sizes responded effectively to the 12 T magnetic field across various GO concentrations, resulting in a vivid and tunable structural color.

4.
ACS Nanosci Au ; 4(4): 263-272, 2024 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-39184835

RESUMEN

While the continuous development of advanced bioprinting technologies is under fervent study, enhancing the regenerative potential of hydrogel-based constructs using external stimuli for wound dressing has yet to be tackled. Fibroblasts play a significant role in wound healing and tissue implants at different stages, including extracellular matrix production, collagen synthesis, and wound and tissue remodeling. This study explores the synergistic interplay between photothermal activity and nanomaterial-mediated cell proliferation. The use of different graphene-based materials (GBM) in the development of photoactive bioinks is investigated. In particular, we report the creation of a skin-inspired dressing for wound healing and regenerative medicine. Three distinct GBM, namely, graphene oxide (GO), reduced graphene oxide (rGO), and graphene platelets (GP), were rigorously characterized, and their photothermal capabilities were elucidated. Our investigations revealed that rGO exhibited the highest photothermal efficiency and antibacterial properties when irradiated, even at a concentration as low as 0.05 mg/mL, without compromising human fibroblast viability. Alginate-based bioinks alongside human fibroblasts were employed for the bioprinting with rGO. The scaffold did not affect the survival of fibroblasts for 3 days after bioprinting, as cell viability was not affected. Remarkably, the inclusion of rGO did not compromise the printability of the hydrogel, ensuring the successful fabrication of complex constructs. Furthermore, the presence of rGO in the final scaffold continued to provide the benefits of photothermal antimicrobial therapy without detrimentally affecting fibroblast growth. This outcome underscores the potential of rGO-enhanced hydrogels in tissue engineering and regenerative medicine applications. Our findings hold promise for developing game-changer strategies in 4D bioprinting to create smart and functional tissue constructs with high fibroblast proliferation and promising therapeutic capabilities in drug delivery and bactericidal skin-inspired dressings.

5.
ACS Appl Mater Interfaces ; 16(32): 42615-42622, 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39101798

RESUMEN

Porous materials synthesized through bottom-up approaches, such as metal-organic frameworks and covalent organic frameworks, have attracted attention owing to their design flexibility for functional materials. However, achieving the chemical and thermal stability of these materials for various applications is challenging considering the reversible coordination bonds and irreversible covalent bonds in their frameworks. Thus, ordered carbonaceous frameworks (OCFs) emerge as a promising class of bottom-up materials with good periodicity, thermal and chemical stability, and electrical conductivity. However, a few OCFs have been reported owing to the limited range of precursor molecules. Herein, we designed a hexaazatrinaphthylene-based molecule with enediyne groups as a precursor molecule for synthesizing an OCF. The solid-state Bergman cyclization of enediyne groups at a low temperature formed a microporous polymer and an OCF, exhibiting redox activity and demonstrating their potential for electrochemical applications. The microporous polymer was used as an active material in sodium-ion batteries, while the OCF was used as an electrochemical capacitor. These findings illustrate the utility of the Bergman cyclization reaction for synthesizing microporous polymers and OCFs with a customizable functionality for broad applications.

6.
Langmuir ; 40(31): 16349-16360, 2024 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-39046223

RESUMEN

In this study, we present an innovative approach for creating hierarchical meso/nanoporous Pt films using dynamic soft templating. The fabrication process, called dynamic soft templating, involves Pt electrodeposition within a specialized bicontinuous microemulsion (BME) system characterized by a sophisticated three-dimensional network comprising water and oil phases, surfactants, and cosurfactants. Pt electrodeposition exclusively occurs in the water phase of the BME. This results in a porous Pt film exhibiting a nanostructure mirroring the oil solution/water solution nanostructure (solution/solution structure) of the BME, the size of which can be tailored by adjusting the BME composition. Through a simultaneous interplay of Pt electrodeposition and overpotential deposition of hydrogen (H-OPD, dissociative adsorption of water), potential-dependent Pt mesostructures are dynamically shaped. As a result, we achieve diverse morphologies in the form of hierarchical meso/nanoporous Pt films. The potential applications of the films are evaluated as electrocatalysts for the methanol oxidation reaction (MOR), and it was found that the electrocatalytic performances seem to be sensitive to nanoporosity and not relevant to mesoporosity.

7.
Chemosphere ; 358: 142060, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38648981

RESUMEN

The widespread application of engineered nanoparticles (NPs) in environmental remediation has raised public concerns about their toxicity to aquatic organisms. Although appropriate surface modification can mitigate the ecotoxicity of NPs, the lack of polymer coating to inhibit toxicity completely and the insufficient knowledge about charge effect hinder the development of safe nanomaterials. Herein, we explored the potential of polyglycerol (PG) functionalization in alleviating the environmental risks of NPs. Iron oxide NPs (ION) of 20, 100, and 200 nm sizes (IONS, IONM and IONL, respectively) were grafted with PG to afford ION-PG. We examined the interaction of ION and ION-PG with Caenorhabditis elegans (C. elegans) and found that PG suppressed non-specific interaction of ION with C. elegans to reduce their accumulation and to inhibit their translocation. Particularly, IONS-PG was completely excluded from worms of all developmental stages. By covalently introducing sulfate, carboxyl and amino groups onto IONS-PG, we further demonstrated that positively charged IONS-PG-NH3+ induced high intestinal accumulation, cuticle adhesion and distal translocation, whereas the negatively charged IONS-PG-OSO3- and IONS-PG-COO- were excreted out. Consequently, no apparent deleterious effects on brood size and life span were observed in worms treated by IONS-PG and IONS-PG bearing negatively charged groups. This study presents new surface functionalization approaches for developing ecofriendly nanomaterials.


Asunto(s)
Caenorhabditis elegans , Glicerol , Polímeros , Caenorhabditis elegans/efectos de los fármacos , Animales , Glicerol/química , Glicerol/toxicidad , Polímeros/química , Nanopartículas Magnéticas de Óxido de Hierro/química , Nanopartículas Magnéticas de Óxido de Hierro/toxicidad , Tamaño de la Partícula , Propiedades de Superficie
8.
Nanoscale ; 16(16): 7908-7915, 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38441113

RESUMEN

Magnetically responsive photonic crystals of colloidal nanosheets hold great promise for various applications. Here, we systematically investigated the magnetically responsive behavior of a photonic crystal consisting of graphene oxide (GO) nanosheets and water. After applying a 12 T magnetic field perpendicular and parallel to the observation direction, the photonic crystal exhibited a more vivid structural color and no structural color, respectively, based on the magnetic orientation of GO nanosheets. The reflection wavelength can be modulated by varying the GO concentration, and the peak intensity can be basically enhanced by increasing both the time and strength of the magnetic application. To improve color quality, we developed a novel approach of alternately applying a magnetic field to two orthogonal directions, instead of using a rotating magnetic field. Finally, we achieved color switching by changing the direction of applied magnetic fields.

10.
Nat Commun ; 15(1): 397, 2024 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-38195692

RESUMEN

So-called Z-scheme systems permit overall water splitting using narrow-bandgap photocatalysts. To boost the performance of such systems, it is necessary to enhance the intrinsic activities of the hydrogen evolution photocatalyst and oxygen evolution photocatalyst, promote electron transfer from the oxygen evolution photocatalyst to the hydrogen evolution photocatalyst, and suppress back reactions. The present work develop a high-performance oxysulfide photocatalyst, Sm2Ti2O5S2, as an hydrogen evolution photocatalyst for use in a Z-scheme overall water splitting system in combination with BiVO4 as the oxygen evolution photocatalyst and reduced graphene oxide as the solid-state electron mediator. After surface modifications of the photocatalysts to promote charge separation and redox reactions, this system is able to split water into hydrogen and oxygen for more than 100 hours with a solar-to-hydrogen energy conversion efficiency of 0.22%. In contrast to many existing photocatalytic systems, the water splitting activity of the present system is only minimally reduced by increasing the background pressure to 90 kPa. These results suggest characteristics suitable for applications under practical operating conditions.

11.
ACS Polym Au ; 3(5): 394-405, 2023 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-37841949

RESUMEN

Practical applications like very thin stress-strain sensors require high strength, stretchability, and conductivity, simultaneously. One of the approaches is improving the toughness of the stress-strain sensing materials. Polymeric materials with movable cross-links in which the polymer chain penetrates the cavity of cyclodextrin (CD) demonstrate enhanced strength and stretchability, simultaneously. We designed two approaches that utilize elastomer nanocomposites with movable cross-links and carbon filler (ketjenblack, KB). One approach is mixing SC (a single movable cross-network material), a linear polymer (poly(ethyl acrylate), PEA), and KB to obtain their composite. The electrical resistance increases proportionally with tensile strain, leading to the application of this composite as a stress-strain sensor. The responses of this material are stable for over 100 loading and unloading cycles. The other approach is a composite made with KB and a movable cross-network elastomer for knitting dissimilar polymers (KP), where movable cross-links connect the CD-modified polystyrene (PSCD) and PEA. The obtained composite acts as a highly sensitive stress-strain sensor that exhibits an exponential increase in resistance with increasing tensile strain due to the polymer dethreading from the CD rings. The designed preparations of highly repeatable or highly responsive stress-strain sensors with good mechanical properties can help broaden their application in electrical devices.

12.
ACS Appl Mater Interfaces ; 15(31): 37837-37844, 2023 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-37486061

RESUMEN

Graphene-oxide (GO) nanosheets, which are oxidized derivatives of graphene, are regarded as promising building blocks for functional soft materials. Especially, thermoresponsive GO nanosheets have been widely employed to develop smart membranes/surfaces, hydrogel actuators, recyclable systems, and biomedical applications. However, current synthetic strategies to generate such thermoresponsive GO nanosheets have exclusively relied on the covalent or non-covalent modification of their surfaces with thermoresponsive polymers, such as poly(N-isopropylacrylamide). To impart a thermoresponsive ability to GO nanosheets themselves, we focused on the countercations of the carboxy and acidic hydroxy groups on the GO nanosheets. In this study, we established a general and reliable method to synthesize GO nanosheets with target countercations and systematically investigated their effects on thermoresponsive behaviors of GO nanosheets. As a result, we discovered that GO nanosheets with Bu4N+ countercations became thermoresponsive in water without the use of any thermoresponsive polymers, inducing a reversible sol-gel transition via their self-assembly and disassembly processes. Owing to the sol-gel transition capability, the resultant dispersion can be used as a direct writing ink for constructing a three-dimensionally designable gel architecture of the GO nanosheets. Our concept of "countercation engineering" can become a new strategy for imparting a stimuli-responsive ability to various charged nanomaterials for the development of next-generation smart materials.

13.
Chempluschem ; 88(8): e202300328, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37428458

RESUMEN

This work reports the synthesis of high surface area reduced graphene oxides using L-ascorbic acid as a reducing agent by precisely controlling the interaction between graphene oxide and L-ascorbic acid. Based on the structural characterization, such as textural properties (specific surface area, pore structure), crystallinity, and carbon chemical state, we identified that the temperature and reaction time are critical parameters to control the stacking degree of the final reduced product. Besides, by performing a time course analysis of the reaction, we identified the side products of the reducing agent by LC-MS and verified the reduction mechanism. Following our results, we proposed an optimum condition for producing a graphene derivative adsorbent with a high surface area. This graphene derivative was tested in an aqueous solution with organic and inorganic pollutants such as methylene blue, methyl orange, and cadmium.

14.
Front Cell Infect Microbiol ; 13: 1209563, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37415828

RESUMEN

Introduction: The antibacterial activity of graphene oxide (GO) has been widely explored and tested against various pathogenic bacterial strains. Although antimicrobial activity of GO against planktonic bacterial cells was demonstrated, its bacteriostatic and bactericidal effect alone is not sufficient to damage sedentary and well protected bacterial cells inside biofilms. Thus, to be utilized as an effective antibacterial agent, it is necessary to improve the antibacterial activity of GO either by integration with other nanomaterials or by attachment of antimicrobial agents. In this study, antimicrobial peptide polymyxin B (PMB) was adsorbed onto the surface of pristine GO and GO functionalized with triethylene glycol. Methods: The antibacterial effects of the resulting materials were examined by evaluating minimum inhibitory concentration, minimum bactericidal concentration, time kill assay, live/dead viability staining and scanning electron microscopy. Results and discussion: PMB adsorption significantly enhanced the bacteriostatic and bactericidal activity of GO against both planktonic cells and bacterial cells in biofilms. Furthermore, the coatings of PMB-adsorbed GO applied to catheter tubes strongly mitigated biofilm formation, by preventing bacterial adhesion and killing the bacterial cells that managed to attach. The presented results suggest that antibacterial peptide absorption can significantly enhance the antibacterial activity of GO and the resulting material can be effectively used not only against planktonic bacteria but also against infectious biofilms.


Asunto(s)
Antiinfecciosos , Grafito , Polimixina B/farmacología , Antiinfecciosos/farmacología , Antibacterianos/farmacología , Grafito/farmacología , Biopelículas , Bacterias , Pruebas de Sensibilidad Microbiana
16.
Adv Sci (Weinh) ; 10(16): e2300268, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37029464

RESUMEN

The rational design of a stable and catalytic carbon cathode is crucial for the development of rechargeable lithium-oxygen (LiO2 ) batteries. An edge-site-free and topological-defect-rich graphene-based material is proposed as a pure carbon cathode that drastically improves LiO2 battery performance, even in the absence of extra catalysts and mediators. The proposed graphene-based material is synthesized using the advanced template technique coupled with high-temperature annealing at 1800 °C. The material possesses an edge-site-free framework and mesoporosity, which is crucial to achieve excellent electrochemical stability and an ultra-large capacity (>6700 mAh g-1 ). Moreover, both experimental and theoretical structural characterization demonstrates the presence of a significant number of topological defects, which are non-hexagonal carbon rings in the graphene framework. In situ isotopic electrochemical mass spectrometry and theoretical calculations reveal the unique catalysis of topological defects in the formation of amorphous Li2 O2 , which may be decomposed at low potential (∼ 3.6 V versus Li/Li+ ) and leads to improved cycle performance. Furthermore, a flexible electrode sheet that excludes organic binders exhibits an extremely long lifetime of up to 307 cycles (>1535 h), in the absence of solid or soluble catalysts. These findings may be used to design robust carbon cathodes for LiO2 batteries.

17.
Adv Mater ; 35(30): e2301506, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37116867

RESUMEN

Bottom-up electrochemical synthesis of atomically thin materials is desirable yet challenging, especially for non-van der Waals (non-vdW) materials. Thicknesses below a few nanometers have not been reported yet, posing the question how thin can non-vdW materials be electrochemically synthesized. This is important as materials with (sub-)unit-cell thickness often show remarkably different properties compared to their bulk form or thin films of several nanometers thickness. Here, a straightforward electrochemical method utilizing the angstrom-confinement of laminar reduced graphene oxide (rGO) nanochannels is introduced to obtain a centimeter-scale network of atomically thin (<4.3 Å) 2D-transition metal oxides (2D-TMO). The angstrom-confinement provides a thickness limitation, forcing sub-unit-cell growth of 2D-TMO with oxygen and metal vacancies. It is showcased that Cr2 O3 , a material without significant catalytic activity for the oxygen evolution reaction (OER) in bulk form, can be activated as a high-performing catalyst if synthesized in the 2D sub-unit-cell form. This method displays the high activity of sub-unit-cell form while retaining the stability of bulk form, promising to yield unexplored fundamental science and applications. It is shown that while retaining the advantages of bottom-up electrochemical synthesis, like simplicity, high yield, and mild conditions, the thickness of TMO can be limited to sub-unit-cell dimensions.

18.
Chemistry ; 29(31): e202300266, 2023 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-36892563

RESUMEN

Covalent functionalization of graphene oxide (GO) with boron dipyrromethenes (BODIPYs) was achieved through a facile synthesis, affording two different GO-BODIPY conjugates where the main difference lies in the nature of the spacer and the type of bonds between the two components. The use of a long but flexible spacer afforded strong electronic GO-BODIPY interactions in the ground state. This drastically altered the light absorption of the BODIPY structure and impeded its selective excitation. In contrast, the utilisation of a short, but rigid spacer based on boronic esters resulted in a perpendicular geometry of the phenyl boronic acid BODIPY (PBA-BODIPY) with respect to the GO plane, which enables only minor electronic GO-BODIPY interactions in the ground state. In this case, selective excitation of PBA-BODIPY was easily achieved, allowing to investigate the excited state interactions. A quantitative ultrafast energy transfer from PBA-BODIPY to GO was observed. Furthermore, due to the reversible dynamic nature of the covalent GO-PBA-BODIPY linkage, some PBA-BODIPY is free in solution and, hence, not quenched from GO. This resulted in a weak, but detectable fluorescence from the PBA-BODIPY that will allow to exploit GO-PBA-BODIPY for slow release and imaging purposes.

19.
Viruses ; 15(3)2023 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-36992519

RESUMEN

Molnupiravir (MOV) and nirmatrelvir/ritonavir (NMV/r) are efficacious oral antiviral agents for patients with the 2019 coronavirus (COVID-19). However, little is known about their effectiveness in older adults and those at high risk of disease progression. This retrospective single-center observational study assessed and compared the outcomes of COVID-19 treated with MOV and NMV/r in a real-world community setting. We included patients with confirmed COVID-19 combined with one or more risk factors for disease progression from June to October 2022. Of 283 patients, 79.9% received MOV and 20.1% NMV/r. The mean patient age was 71.7 years, 56.5% were men, and 71.7% had received ≥3 doses of vaccine. COVID-19-related hospitalization (2.8% and 3.5%, respectively; p = 0.978) or death (0.4% and 3.5%, respectively; p = 0.104) did not differ significantly between the MOV and NMV/r groups. The incidence of adverse events was 2.7% and 5.3%, and the incidence of treatment discontinuation was 2.7% and 5.3% in the MOV and NMV/r groups, respectively. The real-world effectiveness of MOV and NMV/r was similar among older adults and those at high risk of disease progression. The incidence of hospitalization or death was low.


Asunto(s)
COVID-19 , Masculino , Humanos , Anciano , Femenino , Estudios Retrospectivos , Ritonavir/efectos adversos , Tratamiento Farmacológico de COVID-19 , Antivirales/efectos adversos , Progresión de la Enfermedad
20.
Chem Commun (Camb) ; 59(17): 2425-2428, 2023 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-36745444

RESUMEN

We herein report an organic transistor functionalized with a phenylboronic acid derivative and graphene oxide for the quantification of plasma glucose levels, which has been achieved by the minimization of interferent effects derived from physical protein adsorption on the detection electrode.


Asunto(s)
Grafito , Humanos , Electrodos , Glucosa , Plasma , Técnicas Electroquímicas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA