Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Radiat Prot Dosimetry ; 189(4): 436-443, 2020 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-32390037

RESUMEN

The anisotropic emission of neutrons from a cylindrical X1 252Cf source with the spherical external casing was experimentally determined. The influence of metal materials and shapes of the external casing to the anisotropy factor, FI(θ), was assessed by the Monte Carlo calculation, before performing the measurement. The results of the calculation implied that light- and spherical-shaped external casing decreases the anisotropic emission of neutrons from a cylindrical source and the nature of the material does not affect the anisotropic emission to a large extent. The experimental results obtained when a spherical-shaped aluminum protection case was employed also revealed that the anisotropy factor was close to 1.0 with a wide zenith angle range. Considering the source handling and measures against mechanical impact to the source, we designed an SUS304-made spherical protection case for a renovated source delivering apparatus. With the SUS304-made spherical protection case, the measured anisotropy factor FI(90) was determined to be 1.002 ± 0.002 (k = 1). Results from the experiments also indicated that the measured anisotropy factor has a flat distribution from 55 to 125° with zenith angle.


Asunto(s)
Californio , Radiometría , Anisotropía , Método de Montecarlo , Neutrones
3.
Radiat Prot Dosimetry ; 187(1): 61-68, 2019 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-31135906

RESUMEN

For routine calibration of dosemeters used for environmental radiation monitoring, a low dose rate 137Cs gamma ray calibration field that fully satisfies the requirement of the ISO 4037 series was established in the Facility of Radiation Standards in Japan Atomic Energy Agency. Two different methods were employed to determine the reference air kerma rate, namely a conventional ionisation chamber and a G(E) function method used a newly developed scintillation spectrometer. To fulfil the requirement of the ISO 4037 and suppress scattering of Cs gamma ray within the room as far as possible, a suitable lead collimator was introduced to limit the irradiation area at test points and placed at the middle height in an irradiation room with a grating floor. From measured results of de-convoluted photon fluence spectrum and the variation of evaluated reference air kerma rates between 1.0 m and 3.0 m from the centre of the source, gamma ray scattering from the room structures was found to be negligible. The reference air kerma rate at distances between1.0 m and 3.0 m could be then interpolated by simply considering the inverse square law of the distance and air attenuation. The resulting Cs gamma ray calibration field could provide ambient dose equivalent rates of 0.7-7.2 µSv h-1 for use with environmental radiation monitoring devices. Finally, we attempted to calibrate a widely used NaI(Tl) scintillation survey metre, obtaining a quite satisfactory calibration factor. These results also imply that such survey metres can be employed to monitor affected areas and assess the progress of decontamination, as they can provide appropriate measurements of the ambient dose equivalent rate.


Asunto(s)
Radioisótopos de Cesio/análisis , Rayos gamma , Monitoreo de Radiación/instrumentación , Monitoreo de Radiación/normas , Conteo por Cintilación/instrumentación , Calibración , Humanos , Método de Montecarlo , Monitoreo de Radiación/métodos , Conteo por Cintilación/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA