Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 7 de 7
1.
J Exp Med ; 220(9)2023 09 04.
Article En | MEDLINE | ID: mdl-37273177

Inborn errors of the NF-κB pathways underlie various clinical phenotypes in humans. Heterozygous germline loss-of-expression and loss-of-function mutations in RELA underlie RELA haploinsufficiency, which results in TNF-dependent chronic mucocutaneous ulceration and autoimmune hematological disorders. We here report six patients from five families with additional autoinflammatory and autoimmune manifestations. These patients are heterozygous for RELA mutations, all of which are in the 3' segment of the gene and create a premature stop codon. Truncated and loss-of-function RelA proteins are expressed in the patients' cells and exert a dominant-negative effect. Enhanced expression of TLR7 and MYD88 mRNA in plasmacytoid dendritic cells (pDCs) and non-pDC myeloid cells results in enhanced TLR7-driven secretion of type I/III interferons (IFNs) and interferon-stimulated gene expression in patient-derived leukocytes. Dominant-negative mutations in RELA thus underlie a novel form of type I interferonopathy with systemic autoinflammatory and autoimmune manifestations due to excessive IFN production, probably triggered by otherwise non-pathogenic TLR ligands.


Autoimmunity , Interferon Type I , Transcription Factor RelA , Humans , Autoimmunity/genetics , Dendritic Cells , Interferon Type I/genetics , Interferon Type I/metabolism , NF-kappa B/metabolism , Toll-Like Receptor 7/genetics , Toll-Like Receptor 7/metabolism , Transcription Factor RelA/genetics , Transcription Factor RelA/metabolism
2.
Nat Cell Biol ; 25(3): 453-466, 2023 03.
Article En | MEDLINE | ID: mdl-36918692

Stimulator of interferon genes (STING) is essential for the type I interferon response against a variety of DNA pathogens. Upon emergence of cytosolic DNA, STING translocates from the endoplasmic reticulum to the Golgi where STING activates the downstream kinase TBK1, then to lysosome through recycling endosomes (REs) for its degradation. Although the molecular machinery of STING activation is extensively studied and defined, the one underlying STING degradation and inactivation has not yet been fully elucidated. Here we show that STING is degraded by the endosomal sorting complexes required for transport (ESCRT)-driven microautophagy. Airyscan super-resolution microscopy and correlative light/electron microscopy suggest that STING-positive vesicles of an RE origin are directly encapsulated into Lamp1-positive compartments. Screening of mammalian Vps genes, the yeast homologues of which regulate Golgi-to-vacuole transport, shows that ESCRT proteins are essential for the STING encapsulation into Lamp1-positive compartments. Knockdown of Tsg101 and Vps4, components of ESCRT, results in the accumulation of STING vesicles in the cytosol, leading to the sustained type I interferon response. Knockdown of Tsg101 in human primary T cells leads to an increase the expression of interferon-stimulated genes. STING undergoes K63-linked ubiquitination at lysine 288 during its transit through the Golgi/REs, and this ubiquitination is required for STING degradation. Our results reveal a molecular mechanism that prevents hyperactivation of innate immune signalling, which operates at REs.


Endosomal Sorting Complexes Required for Transport , Interferon Type I , Membrane Proteins , Animals , Humans , Adenosine Triphosphatases/metabolism , Endosomal Sorting Complexes Required for Transport/genetics , Endosomal Sorting Complexes Required for Transport/metabolism , Endosomes/metabolism , Microautophagy , Protein Transport , Signal Transduction , Membrane Proteins/genetics , Membrane Proteins/metabolism
3.
Front Immunol ; 13: 905960, 2022.
Article En | MEDLINE | ID: mdl-36211342

Purpose: Upregulation of type I interferon (IFN) signaling has been increasingly detected in inflammatory diseases. Recently, upregulation of the IFN signature has been suggested as a potential biomarker of IFN-driven inflammatory diseases. Yet, it remains unclear to what extent type I IFN is involved in the pathogenesis of undifferentiated inflammatory diseases. This study aimed to quantify the type I IFN signature in clinically undiagnosed patients and assess clinical characteristics in those with a high IFN signature. Methods: The type I IFN signature was measured in patients' whole blood cells. Clinical and biological data were collected retrospectively, and an intensive genetic analysis was performed in undiagnosed patients with a high IFN signature. Results: A total of 117 samples from 94 patients with inflammatory diseases, including 37 undiagnosed cases, were analyzed. Increased IFN signaling was observed in 19 undiagnosed patients, with 10 exhibiting clinical features commonly found in type I interferonopathies. Skin manifestations, observed in eight patients, were macroscopically and histologically similar to those found in proteasome-associated autoinflammatory syndrome. Genetic analysis identified novel mutations in the PSMB8 gene of one patient, and rare variants of unknown significance in genes linked to type I IFN signaling in four patients. A JAK inhibitor effectively treated the patient with the PSMB8 mutations. Patients with clinically quiescent idiopathic pulmonary hemosiderosis and A20 haploinsufficiency showed enhanced IFN signaling. Conclusions: Half of the patients examined in this study, with undifferentiated inflammatory diseases, clinically quiescent A20 haploinsufficiency, or idiopathic pulmonary hemosiderosis, had an elevated type I IFN signature.


Interferon Type I , Janus Kinase Inhibitors , Biomarkers , Humans , Interferon Type I/genetics , Japan , Proteasome Endopeptidase Complex/genetics , Retrospective Studies
4.
Front Immunol ; 13: 917398, 2022.
Article En | MEDLINE | ID: mdl-35812376

Familial Mediterranean fever (FMF) is a hereditary, autoinflammatory disease that causes recurrent fever, arthritis, and serositis. The diagnosis of FMF is based on the presentation of typical clinical symptoms and the Mediterranean fever gene (MEFV) test. However, the challenge lies in diagnosing atypical cases. In this report, we have described a pediatric patient with complex FMF whose diagnosis required trio-whole exome sequencing (WES) and functional validation of a rare MEFV variant. A 3-year-old boy presented with recurrent episodes of elevated liver enzymes and arthralgia. He was diagnosed with autoimmune hepatitis (AIH), and his liver enzymes improved rapidly with steroid treatment. However, he exhibited recurrent arthralgia and severe abdominal attacks. Trio-WES identified compound heterozygous mutations in MEFV (V726A and I692del). Ex vivo functional assays of the patient's monocytes and macrophages, which had been pre-treated with Clostridium difficile toxin A (TcdA) and colchicine, were comparable to those of typical FMF patients, thereby confirming the diagnosis of FMF. Although he was intolerant to colchicine because of liver toxicity, subsequent administration of canakinumab successfully ameliorated his abdominal attacks. However, it was ineffective against liver injury, which recurred after steroid tapering. Therefore, in this case, the pathogenesis of AIH was probably interleukin-1ß (IL-1ß)-independent. In fact, AIH might have been a concurrent disease with FMF, rather than being one of its complications. Nevertheless, further studies are necessary to determine whether FMF-induced inflammasome activation contributes to AIH development. Moreover, we must consider the possibility of mixed phenotypes in such atypical patients who present distinct pathologies simultaneously.


Familial Mediterranean Fever , Hepatitis, Autoimmune , Arthralgia , Child , Colchicine/therapeutic use , Familial Mediterranean Fever/complications , Familial Mediterranean Fever/diagnosis , Familial Mediterranean Fever/drug therapy , Hepatitis, Autoimmune/complications , Hepatitis, Autoimmune/diagnosis , Hepatitis, Autoimmune/drug therapy , Humans , Male , Mutation , Pyrin/genetics
5.
J Exp Med ; 219(6)2022 06 06.
Article En | MEDLINE | ID: mdl-35482294

Mutations in the C-terminal region of the CDC42 gene cause severe neonatal-onset autoinflammation. Effectiveness of IL-1ß-blocking therapy indicates that the pathology involves abnormal inflammasome activation; however, the mechanism underlying autoinflammation remains to be elucidated. Using induced-pluripotent stem cells established from patients carrying CDC42R186C, we found that patient-derived cells secreted larger amounts of IL-1ß in response to pyrin-activating stimuli. Aberrant palmitoylation and localization of CDC42R186C protein to the Golgi apparatus promoted pyrin inflammasome assembly downstream of pyrin dephosphorylation. Aberrant subcellular localization was the common pathological feature shared by CDC42 C-terminal variants with inflammatory phenotypes, including CDC42*192C*24 that also localizes to the Golgi apparatus. Furthermore, the level of pyrin inflammasome overactivation paralleled that of mutant protein accumulation in the Golgi apparatus, but not that of the mutant GTPase activity. These results reveal an unexpected association between CDC42 subcellular localization and pyrin inflammasome activation that could pave the way for elucidating the mechanism of pyrin inflammasome formation.


Golgi Apparatus , Inflammasomes , Golgi Apparatus/metabolism , Humans , Inflammasomes/metabolism , Pyrin/genetics , Pyrin/metabolism
...