Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 54
1.
Antiviral Res ; 223: 105821, 2024 Mar.
Article En | MEDLINE | ID: mdl-38272318

Although antimicrobial peptides have been shown to inactivate viruses through disruption of their viral envelopes, clinical use of such peptides has been hampered by a number of factors, especially their enzymatically unstable structures. To overcome the shortcomings of antimicrobial peptides, peptoids (sequence-specific N-substituted glycine oligomers) mimicking antimicrobial peptides have been developed. We aimed to demonstrate the antiviral effects of antimicrobial peptoids against hepatitis B virus (HBV) in cell culture. The anti-HBV activity of antimicrobial peptoids was screened and evaluated in an infection system involving the HBV reporter virus and HepG2.2.15-derived HBV. By screening with the HBV reporter virus infection system, three (TM1, TM4, and TM19) of 12 peptoids were identified as reducing the infectivity of HBV, though they did not alter the production levels of HBs antigen in cell culture. These peptoids were not cytotoxic at the evaluated concentrations. Among these peptoids, TM19 was confirmed to reduce HBV infection most potently in a HepG2.2.15-derived HBV infection system that closely demonstrates authentic HBV infection. In cell culture, the most effective administration of TM19 was virus treatment at the infection step, but the reduction in HBV infectivity by pre-treatment or post-treatment of cells with TM19 was minimal. The disrupting effect of TM19 targeting infectious viral particles was clarified in iodixanol density gradient analysis. In conclusion, the peptoid TM19 was identified as a potent inhibitor of HBV. This peptoid prevents HBV infection by disrupting viral particles and is a candidate for a new class of anti-HBV reagents.


Anti-Infective Agents , Hepatitis B , Peptoids , Humans , Hepatitis B virus , Peptoids/pharmacology , Peptoids/chemistry , Hepatitis B/drug therapy , Cell Culture Techniques , Antiviral Agents/pharmacology , Antimicrobial Peptides
2.
Sci Rep ; 13(1): 13584, 2023 08 21.
Article En | MEDLINE | ID: mdl-37604854

Chronic hepatitis B virus (HBV) infection is a major medical concern worldwide. Current treatments for HBV infection effectively inhibit virus replication; however, these treatments cannot cure HBV and novel treatment-strategies should be necessary. In this study, we identified tripartite motif-containing protein 26 (TRIM26) could be a supportive factor for HBV replication. Small interfering RNA-mediated TRIM26 knockdown (KD) modestly attenuated HBV replication in human hepatocytes. Endogenous TRIM26 physically interacted with HBV core protein (HBc), but not polymerase and HBx, through the TRIM26 SPRY domain. Unexpectedly, TRIM26 inhibited HBc ubiquitination even though TRIM26 is an E3 ligase. HBc was degraded by TRIM26 KD in Huh-7 cells, whereas the reduction was restored by a proteasome inhibitor. RING domain-deleted TRIM26 mutant (TRIM26ΔR), a dominant negative form of TRIM26, sequestered TRIM26 from HBc, resulting in promoting HBc degradation. Taking together, this study demonstrated that HBV utilizes TRIM26 to avoid the proteasome-dependent HBc degradation. The interaction between TRIM26 and HBc might be a novel therapeutic target against HBV infection.


Hepatitis B, Chronic , Hepatitis B , Humans , Hepatitis B virus/genetics , Proteasome Endopeptidase Complex , Viral Core Proteins/genetics , Tripartite Motif Proteins/genetics , Ubiquitin-Protein Ligases/genetics
3.
Int J Mol Sci ; 24(3)2023 Jan 23.
Article En | MEDLINE | ID: mdl-36768585

N6-methyladenosine (m6A) is a post-transcriptional modification of RNA involved in transcript transport, degradation, translation, and splicing. We found that HBV RNA is modified by m6A predominantly in the coding region of HBx. The mutagenesis of methylation sites reduced the HBV mRNA and HBs protein levels. The suppression of m6A by an inhibitor or knockdown in primary hepatocytes decreased the viral RNA and HBs protein levels in the medium. These results suggest that the m6A modification of HBV RNA is needed for the efficient replication of HBV in hepatocytes.


Hepatitis B virus , Hepatitis B , Humans , Hepatitis B virus/genetics , Hepatitis B virus/metabolism , Viral Regulatory and Accessory Proteins/genetics , Trans-Activators/genetics , Trans-Activators/metabolism , Virus Replication/genetics , RNA, Viral/genetics , RNA, Viral/metabolism
4.
Virus Res ; 323: 199014, 2023 01 02.
Article En | MEDLINE | ID: mdl-36511290

Hepatitis B virus (HBV) infection is a major public health problem. The sodium taurocholate cotransporting polypeptide (NTCP) has been identified as an essential HBV receptor. Human hepatocytes are infected with HBV via binding between the preS1 region of the HBV large envelope protein and the NTCP. However, the role of preS2 in HBV entry is not well understood. In this study, we induced anti-preS2 serum in mice by DNA immunization, and showed that the resulting antiserum neutralized HBV infectivity. Competition assays using overlapping peptides suggested that the neutralizing epitope is located in the N-terminal region of preS2. In addition, monoclonal antibodies targeting the N-terminal region of preS2 neutralized HBV infectivity, indicating that these domains are critical epitopes for viral neutralization. These findings provide new insights into the HBV entry machinery while suggesting a novel modality for the prevention and treatment of HBV infection.


Hepatitis B virus , Hepatitis B , Humans , Mice , Animals , Hepatitis B virus/genetics , Epitopes , Hepatitis B Surface Antigens/genetics , Viral Envelope Proteins , Virus Internalization
5.
Gene ; 853: 147068, 2023 Feb 15.
Article En | MEDLINE | ID: mdl-36427676

Hepatitis B virus (HBV) infection is one of the most serious global health problems. Our previous data using an in vitro assay revealed that miR-6126 suppressed the extracellular HBs antigen level, suggesting that miR-6126 had potential to suppress viral activity of HBV. In the current study, we aimed to clarify whether miR-6126 downregulated the expression level of sodium taurocholate cotransporting polypeptide (NTCP), a host cell receptor required for HBV entry. In brief, HepG2-NTCP cells were utilized to evaluate the expression level of NTCP and the PreS1 attachment to NTCP after transfection with miR-6126. The protein expression level of NTCP was evaluated using Western blot analysis and immunostaining. In addition to HepG2-NTCP cells, PXB cells were also utilized to validate inhibitory effect of miR-6126 on PreS1 attachment. The HBs antigen level in the culture supernatant was measured to evaluate reduction of HBV entry into hepatocytes. The stability of NTCP mRNA was evaluated to ascertain the cause of the downregulation of NTCP mRNA. The expression profile of messenger RNAs was evaluated using next-generation sequencing to search for direct targets of miR-6126. Consequently, transfection of miR-6126 decreased the NTCP expression level in HepG2-NTCP cells. Attachment of the PreS1 probe on the cell surface decreased in HepG2-NTCP cells and PXB cells, primary human hepatocytes. HBs antigen level in the culture supernatant also declined in PXB cells. Stability of NTCP mRNA was reduced by miR-6126 transfection in HepG2 cells. In conclusion, miR-6126 downregulated the expression of NTCP mRNA, which contributed to the inhibition of HBV entry into hepatocytes exerted by miR-6126.


Hepatitis B , MicroRNAs , Symporters , Humans , Hepatocytes/metabolism , Hepatitis B virus/genetics , Hepatitis B/genetics , Hep G2 Cells , Organic Anion Transporters, Sodium-Dependent/genetics , Organic Anion Transporters, Sodium-Dependent/metabolism , Symporters/genetics , Symporters/metabolism , MicroRNAs/metabolism , RNA, Messenger/metabolism , Interferons/pharmacology , Polyethylene Glycols/pharmacology
6.
Nat Commun ; 13(1): 5207, 2022 09 05.
Article En | MEDLINE | ID: mdl-36064848

Although the current hepatitis B (HB) vaccine comprising small-HBs antigen (Ag) is potent and safe, attenuated prophylaxis against hepatitis B virus (HBV) with vaccine-escape mutations (VEMs) has been reported. We investigate an HB vaccine consisting of large-HBsAg that overcomes the shortcomings of the current HB vaccine. Yeast-derived large-HBsAg is immunized into rhesus macaques, and the neutralizing activities of the induced antibodies are compared with those of the current HB vaccine. Although the antibodies induced by the current HB vaccine cannot prevent HBV infection with VEMs, the large-HBsAg vaccine-induced antibodies neutralize those infections. The HBV genotypes that exhibited attenuated neutralization via these vaccines are different. Here, we show that the HB vaccine consisting of large-HBsAg is useful to compensate for the shortcomings of the current HB vaccine. The combined use of these HB vaccines may induce antibodies that can neutralize HBV strains with VEMs or multiple HBV genotypes.


Hepatitis B Vaccines , Hepatitis B , Animals , Hepatitis B/prevention & control , Hepatitis B Antibodies , Hepatitis B Surface Antigens/genetics , Hepatitis B Vaccines/therapeutic use , Hepatitis B virus/genetics , Macaca mulatta , Mutation
7.
mBio ; 13(4): e0097122, 2022 08 30.
Article En | MEDLINE | ID: mdl-35856559

Patients with severe coronavirus disease 2019 tend to have high levels of proinflammatory cytokines, which eventually lead to cytokine storm and the development of acute respiratory distress syndrome. However, the detailed molecular mechanisms of proinflammatory cytokine production remain unknown. Here, we screened severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) genes and found that nonstructural protein 6 (NSP6) and open reading frame 7a (ORF7a) activated the NF-κB pathway. NSP6 and ORF7a interacted with transforming growth factor ß-activated kinase 1 (TAK1), and knockout (KO) of TAK1 or NF-κB essential modulator (NEMO) abolished NF-κB activation by NSP6 and ORF7a. Interestingly, K61 of NSP6 was conjugated to K63-linked polyubiquitin chains by the E3 ubiquitin ligase tripartite motif-containing 13, and this polyubiquitination of NSP6 appeared crucial for recruitment of NEMO to the NSP6-TAK1 complex and NF-κB activation. On the other hand, ring finger protein 121 (RNF121) was required for the polyubiquitination of ORF7a. Knockdown of RNF121 significantly decreased ORF7a binding of TAK1 and NEMO, resulting in the suppression of NF-κB activation. Taken together, our results provide novel molecular insights into the pathogenesis of SARS-CoV-2 and the host immune response to SARS-CoV-2 infection. IMPORTANCE The detailed molecular basis of the induction of proinflammatory cytokines and chemokines by SARS-CoV-2 is unclear, although such induction is clearly related to the severity of COVID-19. Here, we show that SARS-CoV-2 NSP6 and ORF7a lead to NF-κB activation through associations with TAK1. K63-linked polyubiquitination of NSP6 and ORF7a by TRIM13 and RNF121, respectively, appears essential for NF-κB activation. These results suggest that inhibition of the NSP6 and ORF7a gene products may reduce the severity of COVID-19 symptoms by decreasing proinflammatory cytokine levels.


COVID-19 , NF-kappa B , Cytokines/metabolism , Humans , NF-kappa B/metabolism , Open Reading Frames , SARS-CoV-2/genetics , Ubiquitination
8.
Nat Commun ; 13(1): 531, 2022 01 27.
Article En | MEDLINE | ID: mdl-35087074

Autophagy has been linked to a wide range of functions, including a degradative process that defends host cells against pathogens. Although the involvement of autophagy in HBV infection has become apparent, it remains unknown whether selective autophagy plays a critical role in HBV restriction. Here, we report that a member of the galectin family, GAL9, directs the autophagic degradation of HBV HBc. BRET screening revealed that GAL9 interacts with HBc in living cells. Ectopic expression of GAL9 induces the formation of HBc-containing cytoplasmic puncta through interaction with another antiviral factor viperin, which co-localized with the autophagosome marker LC3. Mechanistically, GAL9 associates with HBc via viperin at the cytoplasmic puncta and enhanced the auto-ubiquitination of RNF13, resulting in p62 recruitment to form LC3-positive autophagosomes. Notably, both GAL9 and viperin are type I IFN-stimulated genes that act synergistically for the IFN-dependent proteolysis of HBc in HBV-infected hepatocytes. Collectively, these results reveal a previously undescribed antiviral mechanism against HBV in infected cells and a form of crosstalk between the innate immune system and selective autophagy in viral infection.


Galectins/pharmacology , Hepatitis B virus/drug effects , Macroautophagy/drug effects , Sequestosome-1 Protein/metabolism , Viral Core Proteins/metabolism , Virus Replication/drug effects , Antiviral Agents/pharmacology , Autophagosomes/metabolism , Autophagy/drug effects , Galectins/genetics , Galectins/metabolism , Gene Expression , HEK293 Cells , Hep G2 Cells , Hepatitis B , Hepatitis B virus/metabolism , Humans , Proteolysis , Sequestosome-1 Protein/genetics
9.
J Virol ; 96(5): e0168621, 2022 03 09.
Article En | MEDLINE | ID: mdl-34985994

Hepatitis B virus (HBV) infects 240 million people worldwide. Current therapy profoundly suppresses HBV replication but requires long-term maintenance therapy. Therefore, there is still a medical need for an efficient HBV cure. HBV enters host cells by binding via the preS1 domain of the viral L protein to the Na+/taurocholate cotransporting polypeptide (NTCP). Thus, NTCP should be a key target for the development of anti-HBV therapeutics. Indeed, myrcludex B, a synthetic form of the myristoylated preS1 peptide, effectively reduces HBV/hepatitis D virus (HDV) infection and has been approved as Hepcludex in Europe for the treatment of patients with chronic HDV infection. We established a monoclonal antibody (MAb), N6HB426-20, that recognizes the extracellular domain of human NTCP and blocks HBV entry in vitro into human liver cells but has much less of an inhibitory effect on bile acid uptake. In vivo, administration of the N6HB426-20 MAb prevented HBV viremia for an extended period of time after HBV inoculation in a mouse model system without strongly inhibiting bile acid absorption. Among the extracellular loops (ECLs) of NTCP, regions of amino acids (aa) 84 to 87 in ECL1 and aa 157 to 165 near ECL2 of transmembrane domain 5 are critically important for HBV/HDV infection. Epitope mapping and the three-dimensional (3D) model of the NTCP structure suggested that the N6HB426-20 MAb may recognize aa 276/277 at the tip of ECL4 and interfere with binding of HBV to the region from aa 84 to 87. In summary, we identified an in vivo neutralizing NTCP-targeting antibody capable of preventing HBV infection. Further improvements in efficacy of this drug will pave the way for its clinical applications. IMPORTANCE A number of entry inhibitors are being developed to enhance the treatment of HBV patients with oral nucleoside/nucleotide analogues (NA). To amplify the effectiveness of NA therapy, several efforts have been made to develop therapeutic MAbs with neutralizing activity against HBs antigens. However, the neutralizing effect of these MAbs may be muted by a large excess of HBsAg-positive noninfectious particles in the blood of infected patients. The advantage of NTCP-targeted HBV entry inhibitors is that they remain effective regardless of viral genotype, viral mutations, and the presence of subviral particles. Although N6HB426-20 requires a higher dose than myrcludex to obtain equivalent suppression of HBV in a model mouse system, it maintained the inhibitory effect for a long time postadministration in proportion to the half-life of an IgG MAb. We believe that further improvements will make this antibody a promising treatment option for patients with chronic hepatitis B.


Hepatitis B virus , Hepatitis B , Organic Anion Transporters, Sodium-Dependent , Symporters , Virus Internalization , Animals , Antibodies, Monoclonal/metabolism , Antibodies, Monoclonal/pharmacology , Antibodies, Monoclonal/therapeutic use , Hep G2 Cells , Hepatitis B/drug therapy , Hepatitis B/prevention & control , Hepatitis B/virology , Hepatitis B virus/genetics , Hepatitis B virus/metabolism , Hepatocytes , Humans , Mice , Organic Anion Transporters, Sodium-Dependent/metabolism , Symporters/metabolism , Viral Proteins/metabolism , Virus Internalization/drug effects
10.
Cell Mol Gastroenterol Hepatol ; 12(5): 1583-1598, 2021.
Article En | MEDLINE | ID: mdl-34352407

BACKGROUND & AIMS: To provide an adequate treatment strategy for chronic hepatitis B, it is essential to know which patients are expected to have a good prognosis and which patients do not require therapeutic intervention. Previously, we identified the substitution of isoleucine to leucine at amino acid 97 (I97L) in the hepatitis B core region as a key predictor among patients with stable hepatitis. In this study, we attempted to identify the point at which I97L affects the hepatitis B virus (HBV) life cycle and to elucidate the underlying mechanisms governing the stabilization of hepatitis. METHODS: To confirm the clinical features of I97L, we used a cohort of hepatitis B e antigen-negative patients with chronic hepatitis B infected with HBV-I97 wild-type (wt) or HBV-I97L. The effects of I97L on viral characteristics were evaluated by in vitro HBV production and infection systems with the HBV reporter virus and cell culture-generated HBV. RESULTS: The ratios of reduction in hepatitis B surface antigen and HBV DNA were higher in patients with HBV-I97L than in those with HBV-I97wt. HBV-I97L exhibited lower infectivity than HBV-I97wt in both infection systems with reporter HBV and cell culture-generated HBV. HBV-I97L virions exhibiting low infectivity primarily contained a single-stranded HBV genome. The lower efficiency of cccDNA synthesis was demonstrated after infection of HBV-I97L or transfection of the molecular clone of HBV-I97L. CONCLUSIONS: The I97L substitution reduces the level of cccDNA through the generation of immature virions with single-stranded genomes. This I97L-associated low efficiency of cccDNA synthesis may be involved in the stabilization of hepatitis.


Amino Acid Substitution , Hepatitis B virus/genetics , Hepatitis B/virology , Polymorphism, Genetic , Viral Proteins/genetics , Adult , Biomarkers , Cell Culture Techniques , DNA, Viral , Disease Progression , Female , Gene Expression Regulation, Viral , Genes, Reporter , Genetic Engineering , Hepatitis B/diagnosis , Hepatitis B, Chronic/diagnosis , Hepatitis B, Chronic/virology , Humans , Male , Middle Aged , Models, Biological , Viral Proteins/chemistry , Virus Replication
11.
Hepatology ; 73(2): 520-532, 2021 02.
Article En | MEDLINE | ID: mdl-32446278

BACKGROUND AND AIMS: An efficient cell-culture system for hepatitis B virus (HBV) is indispensable for research on viral characteristics and antiviral reagents. Currently, for the HBV infection assay in cell culture, viruses derived from HBV genome-integrated cell lines of HepG2.2.15 or HepAD-38 are commonly used. However, these viruses are not suitable for the evaluation of polymorphism-dependent viral characteristics or resistant mutations against antiviral reagents. HBV obtained by the transient transfection of the ordinary HBV molecular clone has limited infection efficiencies in cell culture. APPROACH AND RESULTS: We found that an 11-amino-acid deletion (d11) in the preS1 region enhances the infectivity of cell-culture-generated HBV (HBVcc) to sodium taurocholate cotransporting polypeptide-transduced HepG2 (HepG2/NTCP) cells. Infection of HBVcc derived from a d11-introduced genotype C strain (GTC-d11) was ~10-fold more efficient than infection of wild-type GTC (GTC-wt), and the number of infected cells was comparable between GTC-d11- and HepG2.2.15-derived viruses when inoculated with the same genome equivalents. A time-dependent increase in pregenomic RNA and efficient synthesis of covalently closed circular DNA were detected after infection with the GTC-d11 virus. The involvement of d11 in the HBV large surface protein in the enhanced infectivity was confirmed by an HBV reporter virus and hepatitis D virus infection system. The binding step of the GTC-d11 virus onto the cell surface was responsible for this efficient infection. CONCLUSIONS: This system provides a powerful tool for studying the infection and propagation of HBV in cell culture and also for developing the antiviral strategy against HBV infection.


Cell Culture Techniques/methods , Hepatitis B Surface Antigens/metabolism , Hepatitis B virus/pathogenicity , Hepatitis B/virology , Protein Precursors/metabolism , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Drug Evaluation, Preclinical/methods , Hep G2 Cells , Hepatitis B/drug therapy , Hepatitis B/pathology , Hepatitis B Surface Antigens/genetics , Hepatitis B virus/drug effects , Hepatitis B virus/genetics , Humans , Protein Precursors/genetics
12.
J Virol ; 95(5)2021 03 01.
Article En | MEDLINE | ID: mdl-33298539

Hepatitis B virus (HBV) infection is a major public health problem. Human hepatocytes are infected with HBV via binding between the preS1 region in the large envelope protein of HBV and sodium taurocholate cotransporting polypeptide. Although several monoclonal antibodies (MAbs) that recognize the receptor binding domain in preS1 and neutralize HBV infection have been isolated, details of neutralizing epitopes are not understood. In this study, we generated 13 MAbs targeting the preS1 receptor binding domain from preS1-specific memory B cells derived from DNA immunized mice. The MAbs were classified into three groups according to the epitope regions, designated epitopes I-III. A virus neutralization assay revealed that MAbs recognizing epitopes I and III neutralized HBV infection, suggesting that these domains are critical epitopes for viral neutralization. In addition, a neutralization assay against multiple genotypes of HBV revealed that epitope I is a semi-pangenotypic neutralizing epitope, whereas epitope III is a genotype-specific epitope. We also showed that neutralizing MAbs against preS1 could neutralize HBV bearing vaccine-induced escape mutation. These findings provide insight into novel immunoprophylaxis for the prevention and treatment of HBV infection.IMPORTANCE The HBV preS1 2-47 aa region (preS1/2-47) is essential for virus binding with sodium taurocholate cotransporting polypeptide. Several MAbs targeting preS1/2-47 have been reported to neutralize HBV infection; however, which region in preS1/2-47 contains the critical neutralizing epitope for HBV infection is unclear. Here, we generated several MAbs targeting preS1/2-47 and found that MAbs recognizing the N- or C-terminus of preS1/2-47 remarkably neutralized HBV infection. We further confirmed the neutralizing activity of anti-preS1 MAbs against HBV with vaccine escape mutation. These data clarified the relationship between the antibody epitope and the virus neutralizing activity and also suggested the potential ability of a vaccine antigen containing the preS1 region to overcome the weakness of current HB vaccines comprising the small S protein.

13.
Microbiol Immunol ; 65(1): 10-16, 2021 Jan.
Article En | MEDLINE | ID: mdl-33230863

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is causing the global coronavirus disease 2019 (COVID-19) pandemic. Because complete elimination of SARS-CoV-2 appears difficult, decreasing the risk of transmission is important. Treatment with 0.1 and 0.05 ppm ozone gas for 10 and 20 hr, respectively, decreased SARS-CoV-2 infectivity by about 95%. The magnitude of the effect was dependent on humidity. Treatment with 1 and 2 mg/L ozone water for 10 s reduced SARS-CoV-2 infectivity by about 2 and 3 logs, respectively. Our results suggest that low-dose ozone, in the form of gas and water, is effective against SARS-CoV-2.


COVID-19/transmission , Ozone/pharmacology , Virulence/drug effects , Humidity , SARS-CoV-2 , Water
14.
Sci Rep ; 10(1): 14349, 2020 09 01.
Article En | MEDLINE | ID: mdl-32873852

Hepatocytes derived from human iPSCs are useful to study hepatitis B virus (HBV) infection, however infection efficiency is rather poor. In order to improve the efficiency of HBV infection to iPSC-derived hepatocytes, we set a co-culture of hepatocytes with liver non-parenchymal cells and found that liver sinusoidal endothelial cells (LSECs) enhanced HBV infection by secreting epidermal growth factor (EGF). While EGF receptor (EGFR) is known as a co-receptor for HBV, we found that EGF enhanced HBV infection at a low dose of EGF, whereas EGF at a high dose suppressed HBV infection. EGFR is internalized by clathrin-mediated endocytosis (CME) and clathrin-independent endocytosis (CIE) pathways depending on the dose of EGF. At a high dose of EGF, the endocytosed EGFR via CIE is degraded in the lysosome. This study is the first to provide evidence that HBV is endocytosed via CME and CIE pathways at a low and high dose of EGF, respectively. In conclusion, we developed an in vitro system of HBV infection using iPSC-derived liver cells, and show that EGF secreted from LSECs modulates HBV infection in a dose dependent manner.


Endothelial Cells/metabolism , Epidermal Growth Factor/metabolism , Epidermal Growth Factor/pharmacology , Hepatitis B virus/metabolism , Hepatitis B/metabolism , Liver/cytology , Animals , Clathrin/metabolism , Coculture Techniques , Endocytosis/drug effects , Endocytosis/genetics , ErbB Receptors/genetics , ErbB Receptors/metabolism , Gene Knockdown Techniques , Hep G2 Cells , Hepatitis B/virology , Hepatocytes/metabolism , Humans , Induced Pluripotent Stem Cells/cytology , Mice , Mice, Inbred C57BL , Transfection , Virus Internalization
15.
Int J Mol Sci ; 21(16)2020 Aug 07.
Article En | MEDLINE | ID: mdl-32784555

Hepatitis B virus (HBV), a highly persistent pathogen causing hepatocellular carcinoma (HCC), takes full advantage of host machinery, presenting therapeutic targets. Here we aimed to identify novel druggable host cellular factors using the reporter HBV we have recently generated. In an RNAi screen of G protein-coupled receptors (GPCRs), GPCR39 (GPR39) appeared as the top hit to facilitate HBV proliferation. Lentiviral overexpression of active GPR39 proteins and an agonist enhanced HBV replication and transcriptional activities of viral promoters, inducing the expression of CCAAT/enhancer binding protein (CEBP)-ß (CEBPB). Meanwhile, GPR39 was uncovered to activate the heat shock response, upregulating the expression of proviral heat shock proteins (HSPs). In addition, glioma-associated oncogene homologue signaling, a recently reported target of GPR39, was suggested to inhibit HBV replication and eventually suppress expression of CEBPB and HSPs. Thus, GPR39 provirally governed intracellular circuits simultaneously affecting the carcinopathogenetic gene functions. GPR39 and the regulated signaling networks would serve as antiviral targets, and strategies with selective inhibitors of GPR39 functions can develop host-targeted antiviral therapies preventing HCC.


Hepatitis B virus/physiology , Receptors, G-Protein-Coupled/metabolism , Virus Replication , CCAAT-Enhancer-Binding Protein-beta/metabolism , Heat-Shock Proteins/metabolism , Heat-Shock Response , Hedgehog Proteins/metabolism , Hep G2 Cells , Humans , Models, Biological , RNA Interference , Signal Transduction
16.
iScience ; 23(3): 100867, 2020 Mar 27.
Article En | MEDLINE | ID: mdl-32105634

SynNotch receptor technology is a versatile tool that uses the regulatory notch core portion with an extracellular scFv and an intracellular transcription factor that enables to program customized input and output functions in mammalian cells. In this study, we designed a novel synNotch receptor comprising scFv against HBs antigen linked with an intracellular artificial transcription factor and exploited it for viral sensing and cellular immunotherapy. The synNotch receptor expressing cells sensed HBV particles and membrane-bound HBs antigens and responded by expressing reporter molecules, secNL or GFP. We also programmed these cells to dispense antiviral responses such as type I interferon and anti-HBV neutralizing mouse-human chimeric antibodies. Our data reveal that synNotch receptor signaling works for membrane-bound ligands such as enveloped viral particles and proteins borne on liposomal vesicles. This study establishes the concepts of "engineered immunity" where the synNotch platform is utilized for cellular immunotherapy against viral infections.

17.
Hepatol Res ; 50(3): 283-291, 2020 Mar.
Article En | MEDLINE | ID: mdl-31756766

AIM: Interferon (IFN)-λ3 is known to have antiviral effects against various pathogens. Recently, it has been reported that the production of IFN-λ3 in colon cells after the administration of nucleotide analogs is expected to reduce hepatitis B surface antigen in chronic hepatitis B patients. Here, we aimed to prove the antiviral effects of IFN-λ3 on hepatitis B virus (HBV) by using an in vitro HBV production and infection system. METHODS: We used HepG2.2.15-derived HBV as an inoculum and the replication-competent molecular clone of HBV as a replication model. RESULTS: By administering IFN-λ3 to HepG2 cells transfected with the HBV molecular clone, the production of hepatitis B surface antigen and hepatitis B core-related antigen was reduced dose-dependently. IFN-λ3 treatment also reduced the number of HBV-positive cells and the synthesis of covalently closed circular DNA after infection of HepG2.2.15-derived HBV to sodium taurocholate cotransporting polypeptide-transduced HepG2 cells. The inhibitory effect on HBV infection by IFN-λ3 was confirmed by using a recombinant a HBV reporter virus system. To elucidate the underlying mechanisms of the anti-HBV effect of IFN-λ3, we assessed the transcription of HBV RNA and the production of core-associated HBV DNA in HBV molecular clone-transfected HepG2 cells, and found that both parameters were reduced by IFN-λ3. CONCLUSIONS: We observed that the administration of IFN-λ3 inhibits HBV infection and the production of HBV proteins at the HBV RNA transcription level. This finding provides novel insight into the treatment of chronic hepatitis B patients with the administration or induction of IFN-λ3.

18.
Biochem Biophys Res Commun ; 515(1): 156-162, 2019 07 12.
Article En | MEDLINE | ID: mdl-31133379

Hepatitis B virus (HBV) infection, which increases the risk of cirrhosis and hepatocellular carcinoma and requires lifelong treatment, has become a major global health problem. However, host factors essential to the HBV life cycle are still unclear, and the development of new drugs is needed. Cells derived from the human hepatoma cell line HepG2 and engineered to overexpress sodium taurocholate cotransporting polypeptide (NTCP: a receptor for HBV), termed HepG2/NTCP cells, are widely used as the cell-based HBV infection and replication systems for HBV research. We recently found that human hepatoma cell line Li23-derived cells overexpressing NTCP (A8 cells subcloned from Li23 cells), whose gene expression profile was distinct from that of HepG2/NTCP cells, were also sensitive to HBV infection. However, the HBV susceptibility of A8 cells was around 1/100 that of HepG2/NTCP cells. Since we considered that plural cell assay systems will be needed for the objective evaluation of anti-HBV reagents, as we previously demonstrated in hepatitis C virus research, we here attempted to develop a new Li23 cell-derived assay system equivalent to that using HepG2/NTCP cells. By repeated subcloning of A8 cells, we successfully established a new cell line (A8.15.78.10) exhibiting high HBV susceptibility equal to that of HepG2/NTCP cells. Characterization of A8.15.78.10 cells revealed that the increase of HBV susceptibility was correlated with increases in the protein and glycosylation levels of NTCP, and with decreased expression of STING, a factor contributing to innate immunity. Finally, we performed a comparative evaluation of HBV entry inhibitors (cyclosporin A and rosiglitazone) by an HBV/secNL reporter assay using A8.15.78.10 cells or HepG2/NTCP cells. The results confirmed that cyclosporin A exhibited anti-HBV activity in both cell lines, as previously reported. However, we found that rosiglitazone did not show the anti-HBV activity in A8.15.78.10 cells, although it worked in HepG2/NTCP cells as previously reported. This suggested that the difference in anti-HBV activity between cyclosporin A and rosiglitazone was due to the different types of cells used for the assay. In conclusion, plural assay systems using different types of cells are required for the objective and impartial evaluation of anti-HBV reagents.


Carcinoma, Hepatocellular/virology , Hepatitis B virus/physiology , Hepatitis B/virology , Liver Neoplasms/virology , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/metabolism , Cell Line, Tumor , Cyclosporine/pharmacology , Hep G2 Cells , Hepatitis B virus/drug effects , Host-Pathogen Interactions/drug effects , Humans , Liver Neoplasms/genetics , Liver Neoplasms/metabolism , Organic Anion Transporters, Sodium-Dependent/genetics , Organic Anion Transporters, Sodium-Dependent/metabolism , Rosiglitazone/pharmacology , Symporters/genetics , Symporters/metabolism , Virus Internalization/drug effects
19.
Biochem Biophys Rep ; 15: 1-6, 2018 Sep.
Article En | MEDLINE | ID: mdl-30023438

The chemically synthesized endoperoxide compound N-89 and its derivative N-251 were shown to have potent antimalarial activity. We previously demonstrated that N-89 and N-251 potently inhibited the RNA replication of hepatitis C virus (HCV), which belongs to the Flaviviridae family. Since antimalarial and anti-HCV mechanisms have not been clarified, we were interested whether N-89 and N-251 possessed the activity against viruses other than HCV. In this study, we examined the effects of N-89 and N-251 on other flaviviruses (dengue virus and Japanese encephalitis virus) and hepatitis viruses (hepatitis B virus and hepatitis E virus). Our findings revealed that N-89 and N-251 moderately inhibited the RNA replication of Japanese encephalitis virus and hepatitis E virus, although we could not detect those anti-dengue virus activities. We also observed that N-89 and N-251 moderately inhibited the replication of hepatitis B virus at the step after viral translation. These results suggest the possibility that N-89 and N-251 act on some common host factor(s) that are necessary for viral replications, rather than the possibility that N-89 and N-251 directly act on the viral proteins except for HCV. We describe a new type of antiviral reagents, N-89 and N-251, which are applicable to multiple different viruses.

20.
Int J Mol Sci ; 19(7)2018 Jul 02.
Article En | MEDLINE | ID: mdl-30004437

The therapeutic goal for hepatitis B virus (HBV) infection is HBs antigen (HBsAg) seroclearance, which is achieved through 48-week pegylated interferon (Peg-IFN) therapy. This study aimed to identify predictive biomarkers for sustained HBsAg reduction by analyzing serum microRNAs. Twenty-two consecutive chronic HBV infection patients negative for HBe antigen (HBeAg) with HBV-DNA levels <5 log copies/mL, alanine aminotransferase (ALT) <100 U/L, and compensated liver functions, were enrolled. The patients were subcutaneously injected with Peg-IFNα-2a weekly for 48 weeks (treatment period), followed by the 48-week observation period. HBsAg 1-log drop relative to baseline levels recorded at the end of the observation period was considered effective. Sera were obtained at weeks 0 and 24 during the treatment period analyzed for microRNAs. The microRNA (miRNA) antiviral activity was evaluated in vitro using Huh7/sodium taurocholate cotransporting polypeptide (NTCP) cells. As a result, six patients achieved the HBsAg 1-log drop after the observation periods. Comparison of serum microRNA levels demonstrated that high miR-6126 levels at week 24 predicted HBsAg 1-log drop. Furthermore, miR-6126 reduced HBsAg in culture medium supernatants and intracellular HBV-DNA quantities in Huh7/NTCP cells. In conclusion, high serum miR-6126 levels during Peg-IFN therapy predicted the HBsAg 1-log drop 48 weeks after the completion of therapy. In vitro assays revealed that miR-6126 was able to suppress HBsAg production and HBV replication.


Hepatitis B Surface Antigens/blood , Hepatitis B e Antigens/blood , Hepatitis B, Chronic/blood , Hepatitis B, Chronic/drug therapy , Interferon-alpha/administration & dosage , MicroRNAs/blood , Polyethylene Glycols/administration & dosage , Adult , Aged , Cell Line, Tumor , Female , Humans , Male , Middle Aged , Recombinant Proteins/administration & dosage , Time Factors
...