Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biosystems ; 227-228: 104889, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37019377

RESUMEN

While allogeneic hematopoietic stem cell transplantation (allo-HSCT) is a potential curative therapy against hematological malignancies, modulation of donor T cell alloreactivity is required to enhance the graft-versus-leukemia (GVL) effect and control graft-versus-host-disease (GVHD) after allo-HSCT. Donor-derived regulatory CD4+CD25+Foxp3+ T cells (Tregs) play a central role in establishing of immune tolerance after allo-HSCT. They could be a key target to be modulated for increasing the GVL effect and control of GVHD. We constructed an ordinary differential equation model incorporating bidirectional interactions between Tregs and effector CD4+ T cells (Teffs) as a mechanism for control of Treg cell concentration. The goal is to elucidate how the interaction between Tregs and Teffs is modulated in order to get insights into fine tuning of alloreactivity after allo-HSCT. The model was calibrated with respect to published Treg and Teff recovery data after allo-HSCT. The calibrated model exhibits perfect or near-perfect adaptation to stepwise perturbations between Treg and Teff interactions, as seen in Treg cell populations when patients with relapsed malignancy were treated with anti-CTLA-4 (cytotoxic T lymphocyte-associated antigen 4). In addition, the model predicts observed shifts of Tregs and Teffs concentrations after co-stimulatory receptor IL-2R or TNFR2 blockade with allo-HSCT. The present results suggest simultaneous blockades of co-stimulatory and co-inhibitory receptors as a potential treatment for enhancing the GVL effect after allo-HSCT without developing GVHD.


Asunto(s)
Enfermedad Injerto contra Huésped , Trasplante de Células Madre Hematopoyéticas , Humanos , Linfocitos T Reguladores , Enfermedad Injerto contra Huésped/prevención & control , Trasplante de Células Madre Hematopoyéticas/métodos
2.
Biosystems ; 165: 99-105, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-29408212

RESUMEN

Population dynamics of regulatory T cells (Treg) are crucial for the underlying interplay between leukemic and immune cells in progression of acute myeloid leukemia (AML). The goal of this work is to elucidate the dynamics of a model that includes Treg, which can be qualitatively assessed by accumulating clinical findings on the impact of activated immune cell infusion after selective Treg depletion. We constructed an ordinary differential equation model to describe the dynamics of three components in AML: leukemic blast cells, mature regulatory T cells (Treg), and mature effective T cells (Teff), including cytotoxic T lymphocytes. The model includes promotion of Treg expansion by leukemic blast cells, leukemic stem cell and progenitor cell targeting by Teff, and Treg-mediated Teff suppression, and exhibits two coexisting, stable steady states, corresponding to high leukemic cell load at diagnosis or relapse, and to long-term complete remission. Our model is capable of explaining the clinical findings that the survival of patients with AML after allogeneic stem cell transplantation is influenced by the duration of complete remission, and that cut-off minimal residual disease thresholds associated with a 100% relapse rate are identified in AML.


Asunto(s)
Sistema Inmunológico/inmunología , Leucemia Mieloide Aguda/inmunología , Recurrencia Local de Neoplasia/inmunología , Neoplasia Residual/inmunología , Linfocitos T Citotóxicos/inmunología , Linfocitos T Reguladores/inmunología , Humanos , Leucemia Mieloide Aguda/patología , Leucemia Mieloide Aguda/terapia , Recurrencia Local de Neoplasia/patología , Recurrencia Local de Neoplasia/terapia , Neoplasia Residual/patología , Neoplasia Residual/terapia , Pronóstico , Inducción de Remisión , Tasa de Supervivencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA