Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 199
1.
J Am Chem Soc ; 146(15): 10234-10239, 2024 Apr 17.
Article En | MEDLINE | ID: mdl-38578086

Simple organic ligands can self-assemble with metal ions to generate metal-organic cages, whose cavities bind guests selectively. This binding may enable new methods of chemical separation or sensing, among other useful functions. Here we report the preparation of a CuI6L4 pseudo-octahedral metal-organic cage, the ligands of which self-assemble from simple organic building blocks. Temperature, solvent, and the presence of different guests governed which structure predominated from a dynamic mixture of cage diastereomers with different arrangements of right- or left-handed metal vertices. Dissolution in dimethyl sulfoxide or the binding of tetrahedral guests led to a chiral tetrahedral T-symmetric framework, whereas low temperatures favored the achiral S4-symmetric diastereomer. Tetrahedral guests with long arms were encapsulated to form mechanically bonded suit[4]anes, with guest arms protruding out through host windows. The cage was also observed to bind fluorinated steroids, an important class of drug molecules, but not non-fluorinated steroids, providing the basis for new separation processes.

2.
J Am Chem Soc ; 146(8): 5215-5223, 2024 Feb 28.
Article En | MEDLINE | ID: mdl-38349121

Heteroleptic metal-organic capsules, which incorporate more than one type of ligand, can provide enclosed, anisotropic interior cavities for binding low-symmetry molecules of biological and industrial importance. However, the selective self-assembly of a single mixed-ligand architecture, as opposed to the numerous other possible self-assembly outcomes, remains a challenge. Here, we develop a design strategy for the subcomponent self-assembly of heteroleptic metal-organic architectures with anisotropic internal void spaces. Zn6Tet3Tri2 triangular prismatic and Zn8Tet2Tet'4 tetragonal prismatic architectures were prepared through careful matching of the side lengths of the tritopic (Tri) or tetratopic (Tet, Tet') and panels.

3.
J Am Chem Soc ; 146(4): 2568-2573, 2024 Jan 31.
Article En | MEDLINE | ID: mdl-38230667

Chemical separations are expensive, consuming 10-15% of humanity's global energy budget. Many current separation methods employ thermal energy for distillation, often through the combustion of carbon-containing fuels, or extractions and crystallizations from organic solvents, which must then be discarded or redistilled, with a substantial energetic cost. The direct use of renewable energy sources, such as light, could enable the development of novel separations processes, as is required for the transition away from fossil fuel use. Metal-organic capsules, which can selectively bind molecules from mixtures, can provide the foundation for these novel separations processes. Here we report a tetrahedral metal-organic capsule bearing light-responsive diazo moieties around its metal-ion vertices. This capsule can be used to selectively separate progesterone from a mixture of steroids in a process driven by visible light energy. Our process combines biphasic extraction and selective binding of progesterone with the light-driven release of this molecule in purified form. Ultimately, our process might be adapted to the purifications of the many other fine chemical products that are bound selectively by capsules.

4.
J Am Chem Soc ; 146(4): 2370-2378, 2024 Jan 31.
Article En | MEDLINE | ID: mdl-38251968

The use of copper(I) in metal-organic assemblies leads readily to the formation of simple grids and helicates, whereas higher-order structures require complex ligand designs. Here, we report the clean and selective syntheses of two complex and structurally distinct CuI12L8 frameworks, 1 and 2, which assemble from the same simple triaminotriptycene subcomponent and a formylpyridine around the CuI templates. Both represent new structure types. In T-symmetric 1, the copper(I) centers describe a pair of octahedra with a common center but whose vertices are offset from each other, whereas in D3-symmetric 2, the metal ions form a distorted hexagonal prism. The syntheses of these architectures illustrate how more intricate CuI-based complexes can be prepared via subcomponent self-assembly than has been possible to date through consideration of the interplay between the subcomponent geometry and solvent and electronic effects.

5.
J Am Chem Soc ; 146(4): 2379-2386, 2024 Jan 31.
Article En | MEDLINE | ID: mdl-38251985

Control over the stereochemistry of metal-organic cages can give rise to useful functions that are entwined with chirality, such as stereoselective guest binding and chiroptical applications. Here, we report a chiral CuI12L4 pseudo-octahedral cage that self-assembled from condensation of triaminotriptycene, aminoquinaldine, and diformylpyridine subcomponents around CuI templates. The corners of this cage consist of six head-to-tail dicopper(I) helicates whose helical chirality can be controlled by the addition of enantiopure 1,1'-bi-2-naphthol (BINOL) during the assembly process. Chiroptical and nuclear magnetic resonance (NMR) studies elucidated the process and mechanism of stereochemical information transfer from BINOL to the cage during the assembly process. Initially formed CuI(BINOL)2 thus underwent stereoselective ligand exchange during the formation of the chiral helicate corners of the cage, which determined the overall cage stereochemistry. The resulting dicopper(I) helicate corners of the cage were also shown to generate circularly polarized luminescence.

6.
J Am Chem Soc ; 145(35): 19164-19170, 2023 Sep 06.
Article En | MEDLINE | ID: mdl-37610128

A ZnII8L6 pseudocube containing anthracene-centered ligands, a ZnII4L'4 tetrahedron with a similar side length as the cube, and a trigonal prism ZnII6L3L'2 were formed in equilibrium from a common set of subcomponents. Hetero-Diels-Alder reaction with photogenerated singlet oxygen transformed the anthracene-containing "L" ligands into endoperoxide "LO" ones and ultimately drove the integrative self-sorting to form the trigonal prismatic cage ZnII6LO3L'2 exclusively. This ZnII6LO3L'2 structure lost dioxygen in a retro-Diels-Alder reaction after heating, which resulted in reversion to the initial ZnII8L6 + ZnII4L'4 ⇌ 2 × ZnII6L3L'2 equilibrating system. Whereas the ZnII8L6 pseudocube had a cavity too small for guest encapsulation, the ZnII6L3L'2 and ZnII6LO3L'2 trigonal prisms possessed peanut-shaped internal cavities with two isolated compartments divided by bulky anthracene panels. Guest binding was also observed to drive the equilibrating system toward exclusive formation of the ZnII6L3L'2 structure, even in the absence of reaction with singlet oxygen.

7.
Angew Chem Int Ed Engl ; 62(39): e202309589, 2023 Sep 25.
Article En | MEDLINE | ID: mdl-37610599

The anthracene panels of two tetrahedral MII 4 L6 cages, where MII =CoII or FeII , were found to react with photogenerated singlet oxygen (1 O2 ) in a hetero-Diels-Alder reaction. ESI-MS analysis showed the cobalt(II) cages to undergo complete transformation of all anthracene panels into endoperoxides, whereas the iron(II) congeners underwent incomplete conversion. The reaction was found to be partially reversible in the case of the 1-FeII cage. The dioxygen-cage cycloadducts were found to bind a set of guest molecules more weakly than the parent cages, with affinity dropping by more than two orders of magnitude in some cases. The light-driven cycloaddition reaction between cage and 1 O2 thus served as a stimulus for guest release and reuptake.

8.
J Am Chem Soc ; 145(36): 19533-19541, 2023 Sep 13.
Article En | MEDLINE | ID: mdl-37642307

The environment around a host-guest complex is defined by intermolecular interactions between the complex, solvent molecules, and counterions. These interactions govern both the solubility of these complexes and the rates of reactions occurring within the host molecules and can be critical to catalytic and separation applications of host-guest systems. However, these interactions are challenging to detect using standard analytical chemistry techniques. Here, we quantify the hydration and ion pairing of a FeII4L4 coordination cage with a set of guest molecules having widely varying physicochemical properties. The impact of guest properties on host ion pairing and hydration was determined through microwave microfluidic measurements paired with principal component analysis (PCA). This analysis showed that introducing guest molecules into solution displaced counterions that were bound to the cage, and that the solvent solubility of the guest has the greatest impact on the solvent and ion-pairing dynamics surrounding the host. Specifically, we found that when we performed PCA of the measured equivalent circuit parameters and the solubility and dipole moment, we observed a high (>90%) explained variance for the first two principal components for each circuit parameter. We also observed that cage-counterion pairing is well-described by a single ion-pairing type, with a one-step reaction model independent of the type of cargo, and that the ion-pairing association constant is reduced for cargo with higher water solubility. Quantifying hydration and cage-counterion interactions is a critical step to building the next generation of design criteria for host-guest chemistries.

9.
J Am Chem Soc ; 145(29): 15990-15996, 2023 Jul 26.
Article En | MEDLINE | ID: mdl-37440669

This work introduces the use of 8-aminoquinoline subcomponents to generate complex three-dimensional structures. Together with a tris(formylpyridine), 8-aminoquinoline condensed around ZnII templates to produce a tris(tridentate) ligand. This ligand is incorporated into either a tricapped trigonal prismatic ZnII9L6 structure or a pair of pseudo-octahedral ZnII6L4 diastereomers, with S4 and D2 symmetries. Introduction of a methyl group onto the aminoquinoline modulated the coordination sphere of ZnII, which favored the ZnII9L6 structure and disfavored the ZnII6L4 assembly. The tricapped trigonal prismatic ZnII9L6 architecture converted into a single ZnII6L4 cage diastereomer following the addition of a dianionic 4,4'-dinitrostilbene-2,2'-disulfonate guest. Four of these guests clustered tightly at the four windows of the ZnII6L4 cage, held in place through electrostatic interactions and hydrogen bonding, stabilize a single diastereomeric configuration with S4 symmetry.

10.
Adv Mater ; 35(42): e2302580, 2023 Oct.
Article En | MEDLINE | ID: mdl-37462086

Precise control over guest release and recapture using external stimuli is a valuable goal, potentially enabling new modes of chemical purification. Including redox moieties within the ligand cores of molecular capsules to trigger the release and uptake of guests has proved effective, but this technique is limited to certain capsules and guests. Herein, the construction of a series of novel metal-organic capsules from ditopic, tritopic, and tetratopic ligands is demonstrated, all of which contain redox-active azo groups coordinated to FeII centers. Compared to their iminopyridine-based analogs, this new class of azopyridine-based capsules possesses larger cavities, capable of encapsulating more voluminous guests. Upon reduction of the capsules, their guests are released and may then be re-encapsulated when the capsules are regenerated by oxidation. Since the redox centers are on the ligand arms, they are modular and can be attached to a variety of ligand cores to afford varying and predictable architectures. This method thus shows promise as a generalized approach for designing redox-controlled guest release and uptake systems.

11.
J Am Chem Soc ; 145(20): 11356-11363, 2023 May 24.
Article En | MEDLINE | ID: mdl-37191451

The allosteric regulation of biomolecules, such as enzymes, enables them to adapt and alter their conformation to fit specific substrates, expressing different functionalities in response to stimuli. Different stimuli can also trigger synthetic coordination cages to change their shape, size, and nuclearity by reconfiguring the dynamic metal-ligand bonds that hold them together. Here we demonstrate an abiological system consisting of different organic subcomponents and ZnII metal ions, which can respond to simple stimuli in complex ways. A ZnII20L12 dodecahedron transforms to give a larger ZnII30L12 icosidodecahedron through subcomponent exchange, as an aldehyde that forms bidentate ligands is displaced in favor of one that forms tridentate ligands together with a penta-amine subcomponent. In the presence of a chiral template guest, the same system that produced the icosidodecahedron instead gives a ZnII15L6 truncated rhombohedral architecture through enantioselective self-assembly. Under specific crystallization conditions, a guest induces a further reconfiguration of either the ZnII30L12 or ZnII15L6 cages to yield an unprecedented ZnII20L8 pseudo-truncated octahedral structure. The transformation network of these cages shows how large synthetic hosts can undergo structural adaptation through the application of chemical stimuli, opening pathways to broader applications.

12.
J Am Chem Soc ; 145(18): 9965-9969, 2023 May 10.
Article En | MEDLINE | ID: mdl-37115100

The structural complexity of self-assembled metal-organic capsules can be increased by incorporating two or more different ligands into a single discrete product. Such complexity can be useful, by enabling larger, less-symmetrical, or more guests to be bound. Here we describe a rational design strategy for the use of subcomponent self-assembly to selectively prepare a heteroleptic cage with a large cavity volume (2631 Å3) from simple, commercially available starting materials. Our strategy involves the initial isolation of a tris(iminopyridyl) PdII3 complex 1, which reacts with tris(pyridyl)triazine ligand 2 to form a heteroleptic sandwich-like architecture 3. The tris(iminopyridyl) ligand within 3 serves as a "brace" to control the orientations of the labile coordination sites on the PdII centers. Self-assembly of 3 with additional 2 was thus directed to generate a large PdII12 heteroleptic cuboctahedron host. This new cuboctahedron was observed to bind multiple polycyclic aromatic hydrocarbon guests simultaneously.

13.
Angew Chem Int Ed Engl ; 62(18): e202301319, 2023 Apr 24.
Article En | MEDLINE | ID: mdl-36866857

Self-assembly of a flexible tritopic aniline and 3-substituted 2-formylpyridine subcomponents around iron(II) templates gave rise to a low-spin FeII 4 L4 capsule, whereas a high-spin FeII 3 L2 sandwich species formed when a sterically hindered 6-methyl-2-formylpyridine was used. The FeII 4 L4 cage adopted a new structure type with S4 symmetry, having two mer-Δ and two mer-Ʌ metal vertices, as confirmed by NMR and X-ray crystallographic analysis. The flexibility of the face-capping ligand endows the resulting FeII 4 L4 framework with conformational plasticity, enabling it to adapt structurally from S4 to T or C3 symmetry upon guest binding. The cage also displayed negative allosteric cooperativity in simultaneously binding different guests within its cavity and at the apertures between its faces.

14.
J Am Chem Soc ; 145(9): 5570-5577, 2023 Mar 08.
Article En | MEDLINE | ID: mdl-36848676

A tetrahedral FeII4L4 cage assembled from the coordination of triangular chiral, face-capping ligands to iron(II). This cage exists as two diastereomers in solution, which differ in the stereochemistry of their metal vertices, but share the same point chirality of the ligand. The equilibrium between these cage diastereomers was subtly perturbed by guest binding. This perturbation from equilibrium correlated with the size and shape fit of the guest within the host; insight as to the interplay between stereochemistry and fit was provided by atomistic well-tempered metadynamics simulations. The understanding thus gained as to the stereochemical impact on guest binding enabled the design of a straightforward process for the resolution of the enantiomers of a racemic guest.

15.
J Am Chem Soc ; 2023 Feb 08.
Article En | MEDLINE | ID: mdl-36753330

A strategy for light-powered guest release from a tetrahedral capsule has been developed by incorporating azobenzene units at its vertices. A new Zn4L4 tetrahedral capsule bearing 12 diazo moieties at its metal-ion vertices was prepared from a phenyldiazenyl-functionalized subcomponent and a central trialdehyde panel. Ultraviolet irradiation caused isomerization of the peripheral diazo groups from the thermodynamically preferred trans configuration to the cis form, thereby generating steric clash and resulting in cage disassembly and concomitant guest release. Visible-light irradiation drove cage re-assembly following re-isomerization of the diazo groups to the trans form, resulting in guest re-uptake. A detailed 19F NMR study elucidated how switching led to guest release: each metal vertex tolerated only one cis-azobenzene moiety, with further isomerization leading to cage disassembly.

16.
Angew Chem Int Ed Engl ; 62(16): e202301612, 2023 Apr 11.
Article En | MEDLINE | ID: mdl-36815728

A double-walled tetrahedral metal-organic cage assembled in solution from silver(I), 2-formyl-1,8-naphthyridine, halide, and a threefold-symmetric triamine. The AgI 4 X clusters at its vertices each bring together six naphthyridine-imine moieties, leading to a structure in which eight tritopic ligands bridge four clusters in an (AgI 4 X)4 L8 arrangement. Four ligands form an inner set of tetrahedron walls that are surrounded by the outer four. The cage has significant interior volume, and was observed to bind anionic guests. The structure also possesses external binding clefts, located at the edges of the cage, which bound small aromatic guests. Halide ions bound to the silver clusters were observed to exchange in a well-defined hierarchy, allowing modulation of the cavity volume. The principles uncovered here may allow for increasingly more sophisticated cages with silver-cluster vertex architectures, with post-assembly tuning of the interior cavity volume enabling targeted binding behavior.

17.
Angew Chem Int Ed Engl ; 62(12): e202216729, 2023 Mar 13.
Article En | MEDLINE | ID: mdl-36652344

Organic semiconductors are promising for efficient, printable optoelectronics. However, strong excited-state quenching due to uncontrolled aggregation limits their use in devices. We report on the self-assembly of a supramolecular pseudo-cube formed from six perylene diimides (PDIs). The rigid, shape-persistent cage sets the distance and orientation of the PDIs and suppresses intramolecular rotations and vibrations, leading to non-aggregated, monomer-like properties in solution and the solid state, in contrast to the fast fluorescence quenching in the free ligand. The stabilized excited state and electronic purity in the cage enables the observation of delayed fluorescence due to a bright excited multimer, acting as excited-state reservoir in a rare case of benign inter-chromophore interactions in the cage. We show that self-assembly provides a powerful tool for retaining and controlling the electronic properties of chromophores, and to bring molecular electronics devices within reach.

18.
Angew Chem Int Ed Engl ; 62(10): e202217987, 2023 Mar 01.
Article En | MEDLINE | ID: mdl-36637345

We derive design principles for the assembly of rectangular tetramines into Zn8 L6 pseudo-cubic coordination cages. Because of the rectangular, as opposed to square, geometry of the ligand panels, and the possibility of either Δ or Λ handedness of each metal center at the eight corners of the pseudo-cube, many different cage diastereomers are possible. Each of the six tetra-aniline subcomponents investigated in this work assembled with zinc(II) and 2-formylpyridine in acetonitrile into a single Zn8 L6 pseudo-cube diastereomer, however. Each product corresponded to one of four diastereomeric configurations, with T, Th , S6 or D3 symmetry. The preferred diastereomer for a given tetra-aniline subcomponent was shown to be dependent on its aspect ratio and conformational flexibility. Analysis of computationally modeled individual faces or whole pseudo-cubes provided insight as to why the observed diastereomers were favored.

19.
Nat Chem ; 15(3): 405-412, 2023 Mar.
Article En | MEDLINE | ID: mdl-36550231

The regioselective functionalization of C60 remains challenging, while the enantioselective functionalization of C60 is difficult to explore due to the need for complex chiral tethers or arduous chromatography. Metal-organic cages have served as masks to effect the regioselective functionalization of C60. However, it is difficult to control the stereochemistry of the resulting fullerene adducts through this method. Here we report a means of defining up to six stereocentres on C60, achieving enantioselective fullerene functionalization. This method involves the use of a metal-organic cage built from a chiral formylpyridine. Fullerenes hosted within the cavity of the cage can be converted into a series of C60 adducts through chemo-, regio- and stereo-selective Diels-Alder reactions with the edges of the cage. The chiral formylpyridine ultimately dictates the stereochemistry of these chiral fullerene adducts without being incorporated into them. Such chiral fullerene adducts may become useful in devices requiring circularly polarized light manipulation.

20.
Angew Chem Int Ed Engl ; 61(50): e202212634, 2022 Dec 12.
Article En | MEDLINE | ID: mdl-36264645

Spin-crossover (SCO) metal-organic cages capable of switching between high-spin and low-spin states have the potential to be used as magnetic sensors and switches. Variation of the donor strength of heterocyclic aldehyde subcomponents in imine-based ligands can tune the ligand field for a FeII center, which results in both homoleptic and heteroleptic cages with diverse SCO behaviors. The tetrahedral SCO cage built from 1-methyl-1H-imidazole-2-carbaldehyde is capable of encapsulating various guests, which stabilize different cage spin states depending on guest size. Conversely, the SCO tetrahedron exhibits different affinities for guests in different spin states, which is inferred to result from subtle structural differences of the cavity caused by the change in metal center spin state. Examination of SCO thermodynamics across a series of host-guest complexes enabled sensitive probing of guest fit to the host cavity, providing information complementary to binding-constant determination.

...