Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Proteome Res ; 23(3): 956-970, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38310443

RESUMEN

We present compelling evidence for the existence of an extended innate viperin-dependent pathway, which provides crucial evidence for an adaptive response to viral agents, such as SARS-CoV-2. We show the in vivo biosynthesis of a family of novel endogenous cytosine metabolites with potential antiviral activities. Two-dimensional nuclear magnetic resonance (NMR) spectroscopy revealed a characteristic spin-system motif, indicating the presence of an extended panel of urinary metabolites during the acute viral replication phase. Mass spectrometry additionally enabled the characterization and quantification of the most abundant serum metabolites, showing the potential diagnostic value of the compounds for viral infections. In total, we unveiled ten nucleoside (cytosine- and uracil-based) analogue structures, eight of which were previously unknown in humans allowing us to propose a new extended viperin pathway for the innate production of antiviral compounds. The molecular structures of the nucleoside analogues and their correlation with an array of serum cytokines, including IFN-α2, IFN-γ, and IL-10, suggest an association with the viperin enzyme contributing to an ancient endogenous innate immune defense mechanism against viral infection.


Asunto(s)
COVID-19 , Humanos , Estructura Molecular , SARS-CoV-2 , Inmunidad Innata , Citosina , Redes y Vías Metabólicas , Antivirales
2.
Anal Chem ; 96(11): 4505-4513, 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38372289

RESUMEN

We investigated plasma and serum blood derivatives from capillary blood microsamples (500 µL, MiniCollect tubes) and corresponding venous blood (10 mL vacutainers). Samples from 20 healthy participants were analyzed by 1H NMR, and 112 lipoprotein subfraction parameters; 3 supramolecular phospholipid composite (SPC) parameters from SPC1, SPC2, and SPC3 subfractions; 2 N-acetyl signals from α-1-acid glycoprotein (Glyc), GlycA, and GlycB; and 3 calculated parameters, SPC (total), SPC3/SPC2, and Glyc (total) were assessed. Using linear regression between capillary and venous collection sites, we explained that agreement (Adj. R2 ≥ 0.8, p < 0.001) was witnessed for 86% of plasma parameters (103/120) and 88% of serum parameters (106/120), indicating that capillary lipoprotein, SPC, and Glyc concentrations follow changes in venous concentrations. These results indicate that capillary blood microsamples are suitable for sampling in remote areas and for high-frequency longitudinal sampling of the majority of lipoproteins, SPCs, and Glycs.


Asunto(s)
Lipoproteínas , Manejo de Especímenes , Humanos , Espectroscopía de Resonancia Magnética , Plasma
3.
Clin Chem Lab Med ; 62(4): 770-788, 2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-37955280

RESUMEN

OBJECTIVES: The stratification of individuals suffering from acute and post-acute SARS-CoV-2 infection remains a critical challenge. Notably, biomarkers able to specifically monitor viral progression, providing details about patient clinical status, are still not available. Herein, quantitative metabolomics is progressively recognized as a useful tool to describe the consequences of virus-host interactions considering also clinical metadata. METHODS: The present study characterized the urinary metabolic profile of 243 infected individuals by quantitative nuclear magnetic resonance (NMR) spectroscopy and liquid chromatography mass spectrometry (LC-MS). Results were compared with a historical cohort of noninfected subjects. Moreover, we assessed the concentration of recently identified antiviral nucleosides and their association with other metabolites and clinical data. RESULTS: Urinary metabolomics can stratify patients into classes of disease severity, with a discrimination ability comparable to that of clinical biomarkers. Kynurenines showed the highest fold change in clinically-deteriorated patients and higher-risk subjects. Unique metabolite clusters were also generated based on age, sex, and body mass index (BMI). Changes in the concentration of antiviral nucleosides were associated with either other metabolites or clinical variables. Increased kynurenines and reduced trigonelline excretion indicated a disrupted nicotinamide adenine nucleotide (NAD+) and sirtuin 1 (SIRT1) pathway. CONCLUSIONS: Our results confirm the potential of urinary metabolomics for noninvasive diagnostic/prognostic screening and show that the antiviral nucleosides could represent novel biomarkers linking viral load, immune response, and metabolism. Moreover, we established for the first time a casual link between kynurenine accumulation and deranged NAD+/SIRT1, offering a novel mechanism through which SARS-CoV-2 manipulates host physiology.


Asunto(s)
COVID-19 , Humanos , COVID-19/diagnóstico , Sirtuina 1 , NAD , SARS-CoV-2 , Metabolómica/métodos , Biomarcadores/orina , Antivirales , Prueba de COVID-19
4.
J Proteome Res ; 2023 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-38104259

RESUMEN

Globally, burns are a significant cause of injury that can cause substantial acute trauma as well as lead to increased incidence of chronic comorbidity and disease. To date, research has primarily focused on the systemic response to severe injury, with little in the literature reported on the impact of nonsevere injuries (<15% total burn surface area; TBSA). To elucidate the metabolic consequences of a nonsevere burn injury, longitudinal plasma was collected from adults (n = 35) who presented at hospital with a nonsevere burn injury at admission, and at 6 week follow up. A cross-sectional baseline sample was also collected from nonburn control participants (n = 14). Samples underwent multiplatform metabolic phenotyping using 1H nuclear magnetic resonance spectroscopy and liquid chromatography-mass spectrometry to quantify 112 lipoprotein and glycoprotein signatures and 852 lipid species from across 20 subclasses. Multivariate data modeling (orthogonal projections to latent structures-discriminate analysis; OPLS-DA) revealed alterations in lipoprotein and lipid metabolism when comparing the baseline control to hospital admission samples, with the phenotypic signature found to be sustained at follow up. Univariate (Mann-Whitney U) testing and OPLS-DA indicated specific increases in GlycB (p-value < 1.0e-4), low density lipoprotein-2 subfractions (variable importance in projection score; VIP > 6.83e-1) and monoacyglyceride (20:4) (p-value < 1.0e-4) and decreases in circulating anti-inflammatory high-density lipoprotein-4 subfractions (VIP > 7.75e-1), phosphatidylcholines, phosphatidylglycerols, phosphatidylinositols, and phosphatidylserines. The results indicate a persistent systemic metabolic phenotype that occurs even in cases of a nonsevere burn injury. The phenotype is indicative of an acute inflammatory profile that continues to be sustained postinjury, suggesting an impact on systems health beyond the site of injury. The phenotypes contained metabolic signatures consistent with chronic inflammatory states reported to have an elevated incidence postburn injury. Such phenotypic signatures may provide patient stratification opportunities, to identify individual responses to injury, personalize intervention strategies, and improve acute care, reducing the risk of chronic comorbidity.

5.
Int J Mol Sci ; 24(14)2023 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-37511373

RESUMEN

An integrative multi-modal metabolic phenotyping model was developed to assess the systemic plasma sequelae of SARS-CoV-2 (rRT-PCR positive) induced COVID-19 disease in patients with different respiratory severity levels. Plasma samples from 306 unvaccinated COVID-19 patients were collected in 2020 and classified into four levels of severity ranging from mild symptoms to severe ventilated cases. These samples were investigated using a combination of quantitative Nuclear Magnetic Resonance (NMR) spectroscopy and Mass Spectrometry (MS) platforms to give broad lipoprotein, lipidomic and amino acid, tryptophan-kynurenine pathway, and biogenic amine pathway coverage. All platforms revealed highly significant differences in metabolite patterns between patients and controls (n = 89) that had been collected prior to the COVID-19 pandemic. The total number of significant metabolites increased with severity with 344 out of the 1034 quantitative variables being common to all severity classes. Metabolic signatures showed a continuum of changes across the respiratory severity levels with the most significant and extensive changes being in the most severely affected patients. Even mildly affected respiratory patients showed multiple highly significant abnormal biochemical signatures reflecting serious metabolic deficiencies of the type observed in Post-acute COVID-19 syndrome patients. The most severe respiratory patients had a high mortality (56.1%) and we found that we could predict mortality in this patient sub-group with high accuracy in some cases up to 61 days prior to death, based on a separate metabolic model, which highlighted a different set of metabolites to those defining the basic disease. Specifically, hexosylceramides (HCER 16:0, HCER 20:0, HCER 24:1, HCER 26:0, HCER 26:1) were markedly elevated in the non-surviving patient group (Cliff's delta 0.91-0.95) and two phosphoethanolamines (PE.O 18:0/18:1, Cliff's delta = -0.98 and PE.P 16:0/18:1, Cliff's delta = -0.93) were markedly lower in the non-survivors. These results indicate that patient morbidity to mortality trajectories is determined relatively soon after infection, opening the opportunity to select more intensive therapeutic interventions to these "high risk" patients in the early disease stages.


Asunto(s)
COVID-19 , Humanos , SARS-CoV-2 , Lipidómica , Pandemias , Plasma
6.
Nat Commun ; 13(1): 6557, 2022 11 30.
Artículo en Inglés | MEDLINE | ID: mdl-36450721

RESUMEN

Described antimicrobial resistance mechanisms enable bacteria to avoid the direct effects of antibiotics and can be monitored by in vitro susceptibility testing and genetic methods. Here we describe a mechanism of sulfamethoxazole resistance that requires a host metabolite for activity. Using a combination of in vitro evolution and metabolic rescue experiments, we identify an energy-coupling factor (ECF) transporter S component gene (thfT) that enables Group A Streptococcus to acquire extracellular reduced folate compounds. ThfT likely expands the substrate specificity of an endogenous ECF transporter to acquire reduced folate compounds directly from the host, thereby bypassing the inhibition of folate biosynthesis by sulfamethoxazole. As such, ThfT is a functional equivalent of eukaryotic folate uptake pathways that confers very high levels of resistance to sulfamethoxazole, yet remains undetectable when Group A Streptococcus is grown in the absence of reduced folates. Our study highlights the need to understand how antibiotic susceptibility of pathogens might function during infections to identify additional mechanisms of resistance and reduce ineffective antibiotic use and treatment failures, which in turn further contribute to the spread of antimicrobial resistance genes amongst bacterial pathogens.


Asunto(s)
Streptococcus pyogenes , Sulfametoxazol , Sulfametoxazol/farmacología , Antibacterianos/farmacología , Especificidad por Sustrato , Ácido Fólico
7.
Analyst ; 147(19): 4213-4221, 2022 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-35994017

RESUMEN

A JEDI NMR pulse experiment incorporating relaxational, diffusional and J-modulation peak editing has been implemented for a low field (80 MHz proton resonance frequency) spectrometer system to measure quantitatively two recently discovered plasma markers of SARS-CoV-2 infection and general inflammation. JEDI spectra capture a unique signature of two biomarker signals from acetylated glycoproteins (Glyc) and the supramolecular phospholipid composite (SPC) signals that are relatively enhanced by the combination of relaxation, diffusion and J-editing properties of the JEDI experiment that strongly attenuate contributions from the other molecular species in plasma. The SPC/Glyc ratio data were essentially identical in the 600 MHz and 80 MHz spectra obtained (R2 = 0.97) and showed significantly different ratios for control (n = 28) versus SARS-CoV-2 positive patients (n = 29) (p = 5.2 × 10-8 and 3.7 × 10-8 respectively). Simplification of the sample preparation allows for data acquisition in a similar time frame to high field machines (∼4 min) and a high-throughput version with 1 min experiment time could be feasible. These data show that these newly discovered inflammatory biomarkers can be measured effectively on low field NMR instruments that do not not require housing in a complex laboratory environment, thus lowering the barrier to clinical translation of this diagnostic technology.


Asunto(s)
COVID-19 , Biomarcadores , COVID-19/diagnóstico , Humanos , Fosfolípidos , Protones , SARS-CoV-2
8.
Anal Chem ; 94(10): 4426-4436, 2022 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-35230805

RESUMEN

SARS-CoV-2 infection causes a significant reduction in lipoprotein-bound serum phospholipids give rise to supramolecular phospholipid composite (SPC) signals observed in diffusion and relaxation edited 1H NMR spectra. To characterize the chemical structural components and compartmental location of SPC and to understand further its possible diagnostic properties, we applied a Statistical HeterospectroscopY in n-dimensions (SHY-n) approach. This involved statistically linking a series of orthogonal measurements made on the same samples, using independent analytical techniques and instruments, to identify the major individual phospholipid components giving rise to the SPC signals. Thus, an integrated model for SARS-CoV-2 positive and control adults is presented that relates three identified diagnostic subregions of the SPC signal envelope (SPC1, SPC2, and SPC3) generated using diffusion and relaxation edited (DIRE) NMR spectroscopy to lipoprotein and lipid measurements obtained by in vitro diagnostic NMR spectroscopy and ultrahigh-performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS). The SPC signals were then correlated sequentially with (a) total phospholipids in lipoprotein subfractions; (b) apolipoproteins B100, A1, and A2 in different lipoproteins and subcompartments; and (c) MS-measured total serum phosphatidylcholines present in the NMR detection range (i.e., PCs: 16.0,18.2; 18.0,18.1; 18.2,18.2; 16.0,18.1; 16.0,20.4; 18.0,18.2; 18.1,18.2), lysophosphatidylcholines (LPCs: 16.0 and 18.2), and sphingomyelin (SM 22.1). The SPC3/SPC2 ratio correlated strongly (r = 0.86) with the apolipoprotein B100/A1 ratio, a well-established marker of cardiovascular disease risk that is markedly elevated during acute SARS-CoV-2 infection. These data indicate the considerable potential of using a serum SPC measurement as a metric of cardiovascular risk based on a single NMR experiment. This is of specific interest in relation to understanding the potential for increased cardiovascular risk in COVID-19 patients and risk persistence in post-acute COVID-19 syndrome (PACS).


Asunto(s)
COVID-19 , Enfermedades Cardiovasculares , Adulto , Biomarcadores , COVID-19/complicaciones , COVID-19/diagnóstico , Enfermedades Cardiovasculares/diagnóstico , Humanos , Lipoproteínas , Fosfolípidos , Factores de Riesgo , SARS-CoV-2 , Espectrometría de Masas en Tándem/métodos , Síndrome Post Agudo de COVID-19
9.
Anal Chem ; 94(2): 1333-1341, 2022 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-34985268

RESUMEN

Proton nuclear magnetic resonance (NMR) N-acetyl signals (Glyc) from glycoproteins and supramolecular phospholipids composite peak (SPC) from phospholipid quaternary nitrogen methyls in subcompartments of lipoprotein particles) can give important systemic metabolic information, but their absolute quantification is compromised by overlap with interfering resonances from lipoprotein lipids themselves. We present a J-Edited DIffusional (JEDI) proton NMR spectroscopic approach to selectively augment signals from the inflammatory marker peaks Glyc and SPCs in blood serum NMR spectra, which enables direct integration of peaks associated with molecules found in specific compartments. We explore a range of pulse sequences that allow editing based on peak J-modulation, translational diffusion, and T2 relaxation time and validate them for untreated blood serum samples from SARS-CoV-2 infected patients (n = 116) as well as samples from healthy controls and pregnant women with physiological inflammation and hyperlipidemia (n = 631). The data show that JEDI is an improved approach to selectively investigate inflammatory signals in serum and may have widespread diagnostic applicability to disease states associated with systemic inflammation.


Asunto(s)
COVID-19 , Protones , Biomarcadores , Femenino , Glicoproteínas , Humanos , Inflamación , Espectroscopía de Resonancia Magnética , Fosfolípidos , Embarazo , SARS-CoV-2 , Suero
10.
J Proteome Res ; 20(8): 4139-4152, 2021 08 06.
Artículo en Inglés | MEDLINE | ID: mdl-34251833

RESUMEN

Quantitative plasma lipoprotein and metabolite profiles were measured on an autonomous community of the Basque Country (Spain) cohort consisting of hospitalized COVID-19 patients (n = 72) and a matched control group (n = 75) and a Western Australian (WA) cohort consisting of (n = 17) SARS-CoV-2 positives and (n = 20) healthy controls using 600 MHz 1H nuclear magnetic resonance (NMR) spectroscopy. Spanish samples were measured in two laboratories using one-dimensional (1D) solvent-suppressed and T2-filtered methods with in vitro diagnostic quantification of lipoproteins and metabolites. SARS-CoV-2 positive patients and healthy controls from both populations were modeled and cross-projected to estimate the biological similarities and validate biomarkers. Using the top 15 most discriminatory variables enabled construction of a cross-predictive model with 100% sensitivity and specificity (within populations) and 100% sensitivity and 82% specificity (between populations). Minor differences were observed between the control metabolic variables in the two cohorts, but the lipoproteins were virtually indistinguishable. We observed highly significant infection-related reductions in high-density lipoprotein (HDL) subfraction 4 phospholipids, apolipoproteins A1 and A2,that have previously been associated with negative regulation of blood coagulation and fibrinolysis. The Spanish and Australian diagnostic SARS-CoV-2 biomarkers were mathematically and biologically equivalent, demonstrating that NMR-based technologies are suitable for the study of the comparative pathology of COVID-19 via plasma phenotyping.


Asunto(s)
COVID-19 , SARS-CoV-2 , Australia , Biomarcadores , Humanos , Lipoproteínas
11.
Int J Mol Sci ; 22(13)2021 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-34206372

RESUMEN

A choline-binding module from pneumococcal LytA autolysin, LytA239-252, was reported to have a highly stable nativelike ß-hairpin in aqueous solution, which turns into a stable amphipathic α-helix in the presence of micelles. Here, we aim to obtain insights into this DPC-micelle triggered ß-hairpin-to-α-helix conformational transition using photo-CIDNP NMR experiments. Our results illustrate the dependency between photo-CIDNP phenomena and the light intensity in the sample volume, showing that the use of smaller-diameter (2.5 mm) NMR tubes instead of the conventional 5 mm ones enables more efficient illumination for our laser-diode light setup. Photo-CIDNP experiments reveal different solvent accessibility for the two tyrosine residues, Y249 and Y250, the latter being less accessible to the solvent. The cross-polarization effects of these two tyrosine residues of LytA239-252 allow for deeper insights and evidence their different behavior, showing that the Y250 aromatic side chain is involved in a stronger interaction with DPC micelles than Y249 is. These results can be interpreted in terms of the DPC micelle disrupting the aromatic stacking between W241 and Y250 present in the nativelike ß-hairpin, hence initiating conversion towards the α-helix structure. Our photo-CIDNP methodology represents a powerful tool for observing residue-level information in switch peptides that is difficult to obtain by other spectroscopic techniques.


Asunto(s)
Micelas , Péptidos/química , Conformación Proteica en Hélice alfa , Tirosina/química , Luz , Resonancia Magnética Nuclear Biomolecular , Procesos Fotoquímicos , Análisis Espectral
13.
J Proteome Res ; 20(6): 3315-3329, 2021 06 04.
Artículo en Inglés | MEDLINE | ID: mdl-34009992

RESUMEN

We present a multivariate metabotyping approach to assess the functional recovery of nonhospitalized COVID-19 patients and the possible biochemical sequelae of "Post-Acute COVID-19 Syndrome", colloquially known as long-COVID. Blood samples were taken from patients ca. 3 months after acute COVID-19 infection with further assessment of symptoms at 6 months. Some 57% of the patients had one or more persistent symptoms including respiratory-related symptoms like cough, dyspnea, and rhinorrhea or other nonrespiratory symptoms including chronic fatigue, anosmia, myalgia, or joint pain. Plasma samples were quantitatively analyzed for lipoproteins, glycoproteins, amino acids, biogenic amines, and tryptophan pathway intermediates using Nuclear Magnetic Resonance (NMR) spectroscopy and mass spectrometry. Metabolic data for the follow-up patients (n = 27) were compared with controls (n = 41) and hospitalized severe acute respiratory syndrome SARS-CoV-2 positive patients (n = 18, with multiple time-points). Univariate and multivariate statistics revealed variable patterns of functional recovery with many patients exhibiting residual COVID-19 biomarker signatures. Several parameters were persistently perturbed, e.g., elevated taurine (p = 3.6 × 10-3 versus controls) and reduced glutamine/glutamate ratio (p = 6.95 × 10-8 versus controls), indicative of possible liver and muscle damage and a high energy demand linked to more generalized tissue repair or immune function. Some parameters showed near-complete normalization, e.g., the plasma apolipoprotein B100/A1 ratio was similar to that of healthy controls but significantly lower (p = 4.2 × 10-3) than post-acute COVID-19 patients, reflecting partial reversion of the metabolic phenotype (phenoreversion) toward the healthy metabolic state. Plasma neopterin was normalized in all follow-up patients, indicative of a reduction in the adaptive immune activity that has been previously detected in active SARS-CoV-2 infection. Other systemic inflammatory biomarkers such as GlycA and the kynurenine/tryptophan ratio remained elevated in some, but not all, patients. Correlation analysis, principal component analysis (PCA), and orthogonal-partial least-squares discriminant analysis (O-PLS-DA) showed that the follow-up patients were, as a group, metabolically distinct from controls and partially comapped with the acute-phase patients. Significant systematic metabolic differences between asymptomatic and symptomatic follow-up patients were also observed for multiple metabolites. The overall metabolic variance of the symptomatic patients was significantly greater than that of nonsymptomatic patients for multiple parameters (χ2p = 0.014). Thus, asymptomatic follow-up patients including those with post-acute COVID-19 Syndrome displayed a spectrum of multiple persistent biochemical pathophysiology, suggesting that the metabolic phenotyping approach may be deployed for multisystem functional assessment of individual post-acute COVID-19 patients.


Asunto(s)
COVID-19 , COVID-19/complicaciones , Humanos , Lipoproteínas , Espectroscopía de Resonancia Magnética , SARS-CoV-2 , Síndrome Post Agudo de COVID-19
14.
Anal Chem ; 93(8): 3976-3986, 2021 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-33577736

RESUMEN

We have applied nuclear magnetic resonance spectroscopy based plasma phenotyping to reveal diagnostic molecular signatures of SARS-CoV-2 infection via combined diffusional and relaxation editing (DIRE). We compared plasma from healthy age-matched controls (n = 26) with SARS-CoV-2 negative non-hospitalized respiratory patients and hospitalized respiratory patients (n = 23 and 11 respectively) with SARS-CoV-2 rRT-PCR positive respiratory patients (n = 17, with longitudinal sampling time-points). DIRE data were modelled using principal component analysis and orthogonal projections to latent structures discriminant analysis (O-PLS-DA), with statistical cross-validation indices indicating excellent model generalization for the classification of SARS-CoV-2 positivity for all comparator groups (area under the receiver operator characteristic curve = 1). DIRE spectra show biomarker signal combinations conferred by differential concentrations of metabolites with selected molecular mobility properties. These comprise the following: (a) composite N-acetyl signals from α-1-acid glycoprotein and other glycoproteins (designated GlycA and GlycB) that were elevated in SARS-CoV-2 positive patients [p = 2.52 × 10-10 (GlycA) and 1.25 × 10-9 (GlycB) vs controls], (b) two diagnostic supramolecular phospholipid composite signals that were identified (SPC-A and SPC-B) from the -+N-(CH3)3 choline headgroups of lysophosphatidylcholines carried on plasma glycoproteins and from phospholipids in high-density lipoprotein subfractions (SPC-A) together with a phospholipid component of low-density lipoprotein (SPC-B). The integrals of the summed SPC signals (SPCtotal) were reduced in SARS-CoV-2 positive patients relative to both controls (p = 1.40 × 10-7) and SARS-CoV-2 negative patients (p = 4.52 × 10-8) but were not significantly different between controls and SARS-CoV-2 negative patients. The identity of the SPC signal components was determined using one and two dimensional diffusional, relaxation, and statistical spectroscopic experiments. The SPCtotal/GlycA ratios were also significantly different for control versus SARS-CoV-2 positive patients (p = 1.23 × 10-10) and for SARS-CoV-2 negatives versus positives (p = 1.60 × 10-9). Thus, plasma SPCtotal and SPCtotal/GlycA are proposed as sensitive molecular markers for SARS-CoV-2 positivity that could effectively augment current COVID-19 diagnostics and may have value in functional assessment of the disease recovery process in patients with long-term symptoms.


Asunto(s)
COVID-19/diagnóstico , Orosomucoide/análisis , Fosfolípidos/sangre , Anciano , Biomarcadores/sangre , COVID-19/sangre , Femenino , Humanos , Masculino , Persona de Mediana Edad , Análisis Multivariante , Resonancia Magnética Nuclear Biomolecular/métodos , Orosomucoide/química , Fosfolípidos/química , Espectroscopía de Protones por Resonancia Magnética/métodos , Espectroscopía de Protones por Resonancia Magnética/estadística & datos numéricos , Curva ROC , SARS-CoV-2
15.
J Proteome Res ; 20(2): 1382-1396, 2021 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-33426894

RESUMEN

To investigate the systemic metabolic effects of SARS-CoV-2 infection, we analyzed 1H NMR spectroscopic data on human blood plasma and co-modeled with multiple plasma cytokines and chemokines (measured in parallel). Thus, 600 MHz 1H solvent-suppressed single-pulse, spin-echo, and 2D J-resolved spectra were collected on plasma recorded from SARS-CoV-2 rRT-PCR-positive patients (n = 15, with multiple sampling timepoints) and age-matched healthy controls (n = 34, confirmed rRT-PCR negative), together with patients with COVID-19/influenza-like clinical symptoms who tested SARS-CoV-2 negative (n = 35). We compared the single-pulse NMR spectral data with in vitro diagnostic research (IVDr) information on quantitative lipoprotein profiles (112 parameters) extracted from the raw 1D NMR data. All NMR methods gave highly significant discrimination of SARS-CoV-2 positive patients from controls and SARS-CoV-2 negative patients with individual NMR methods, giving different diagnostic information windows on disease-induced phenoconversion. Longitudinal trajectory analysis in selected patients indicated that metabolic recovery was incomplete in individuals without detectable virus in the recovery phase. We observed four plasma cytokine clusters that expressed complex differential statistical relationships with multiple lipoproteins and metabolites. These included the following: cluster 1, comprising MIP-1ß, SDF-1α, IL-22, and IL-1α, which correlated with multiple increased LDL and VLDL subfractions; cluster 2, including IL-10 and IL-17A, which was only weakly linked to the lipoprotein profile; cluster 3, which included IL-8 and MCP-1 and were inversely correlated with multiple lipoproteins. IL-18, IL-6, and IFN-γ together with IP-10 and RANTES exhibited strong positive correlations with LDL1-4 subfractions and negative correlations with multiple HDL subfractions. Collectively, these data show a distinct pattern indicative of a multilevel cellular immune response to SARS CoV-2 infection interacting with the plasma lipoproteome giving a strong and characteristic immunometabolic phenotype of the disease. We observed that some patients in the respiratory recovery phase and testing virus-free were still metabolically highly abnormal, which indicates a new role for these technologies in assessing full systemic recovery.


Asunto(s)
COVID-19/diagnóstico , Quimiocinas/metabolismo , Citocinas/metabolismo , Lipoproteínas/metabolismo , Espectroscopía de Resonancia Magnética/métodos , SARS-CoV-2/metabolismo , Adulto , Anciano , COVID-19/sangre , COVID-19/virología , Quimiocinas/sangre , Citocinas/sangre , Femenino , Interacciones Huésped-Patógeno , Humanos , Lipoproteínas/sangre , Masculino , Metabolómica/métodos , Persona de Mediana Edad , Proteómica/métodos , SARS-CoV-2/fisiología
16.
J Proteome Res ; 20(2): 1415-1423, 2021 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-33491459

RESUMEN

The utility of low sample volume in vitro diagnostic (IVDr) proton nuclear magnetic resonance (1H NMR) spectroscopic experiments on blood plasma for information recovery from limited availability or high value samples was exemplified using plasma from patients with SARS-CoV-2 infection and normal controls. 1H NMR spectra were obtained using solvent-suppressed 1D, spin-echo (CPMG), and 2-dimensional J-resolved (JRES) spectroscopy using both 3 mm outer diameter SampleJet NMR tubes (100 µL plasma) and 5 mm SampleJet NMR tubes (300 µL plasma) under in vitro diagnostic conditions. We noted near identical diagnostic models in both standard and low volume IVDr lipoprotein analysis (measuring 112 lipoprotein parameters) with a comparison of the two tubes yielding R2 values ranging between 0.82 and 0.99 for the 40 paired lipoprotein parameters samples. Lipoprotein measurements for the 3 mm tubes were achieved without time penalty over the 5 mm tubes as defined by biomarker recovery for SARS-CoV-2. Overall, biomarker pattern recovery for the lipoproteins was extremely similar, but there were some small positive offsets in the linear equations for several variables due to small shimming artifacts, but there was minimal degradation of the biological information. For the standard untargeted 1D, CPMG, and JRES NMR experiments on the same samples, the reduced signal-to-noise was more constraining and required greater scanning times to achieve similar differential diagnostic performance (15 min per sample per experiment for 3 mm 1D and CPMG, compared to 4 min for the 5 mm tubes). We conclude that the 3 mm IVDr method is fit-for-purpose for quantitative lipoprotein measurements, allowing the preparation of smaller volumes for high value or limited volume samples that is common in clinical studies. If there are no analytical time constraints, the lower volume experiments are equally informative for untargeted profiling.


Asunto(s)
COVID-19/diagnóstico , Lipoproteínas/metabolismo , Metabolómica/métodos , Proteómica/métodos , Espectroscopía de Protones por Resonancia Magnética/métodos , SARS-CoV-2/metabolismo , Adulto , Anciano , Biomarcadores/sangre , Biomarcadores/metabolismo , COVID-19/sangre , COVID-19/virología , Femenino , Humanos , Lipoproteínas/sangre , Masculino , Persona de Mediana Edad , Mapas de Interacción de Proteínas , SARS-CoV-2/fisiología
17.
J Proteome Res ; 19(11): 4442-4454, 2020 11 06.
Artículo en Inglés | MEDLINE | ID: mdl-32806897

RESUMEN

The metabolic effects of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection on human blood plasma were characterized using multiplatform metabolic phenotyping with nuclear magnetic resonance (NMR) spectroscopy and liquid chromatography-mass spectrometry (LC-MS). Quantitative measurements of lipoprotein subfractions, α-1-acid glycoprotein, glucose, and biogenic amines were made on samples from symptomatic coronavirus disease 19 (COVID-19) patients who had tested positive for the SARS-CoV-2 virus (n = 17) and from age- and gender-matched controls (n = 25). Data were analyzed using an orthogonal-projections to latent structures (OPLS) method and used to construct an exceptionally strong (AUROC = 1) hybrid NMR-MS model that enabled detailed metabolic discrimination between the groups and their biochemical relationships. Key discriminant metabolites included markers of inflammation including elevated α-1-acid glycoprotein and an increased kynurenine/tryptophan ratio. There was also an abnormal lipoprotein, glucose, and amino acid signature consistent with diabetes and coronary artery disease (low total and HDL Apolipoprotein A1, low HDL triglycerides, high LDL and VLDL triglycerides), plus multiple highly significant amino acid markers of liver dysfunction (including the elevated glutamine/glutamate and Fischer's ratios) that present themselves as part of a distinct SARS-CoV-2 infection pattern. A multivariate training-test set model was validated using independent samples from additional SARS-CoV-2 positive patients and controls. The predictive model showed a sensitivity of 100% for SARS-CoV-2 positivity. The breadth of the disturbed pathways indicates a systemic signature of SARS-CoV-2 positivity that includes elements of liver dysfunction, dyslipidemia, diabetes, and coronary heart disease risk that are consistent with recent reports that COVID-19 is a systemic disease affecting multiple organs and systems. Metabolights study reference: MTBLS2014.


Asunto(s)
Aminoácidos/sangre , Infecciones por Coronavirus , Lipoproteínas/sangre , Modelos Biológicos , Insuficiencia Multiorgánica , Pandemias , Neumonía Viral , Anciano , Betacoronavirus , Biomarcadores , Glucemia/análisis , COVID-19 , Infecciones por Coronavirus/sangre , Infecciones por Coronavirus/complicaciones , Infecciones por Coronavirus/epidemiología , Infecciones por Coronavirus/metabolismo , Femenino , Humanos , Espectroscopía de Resonancia Magnética , Masculino , Espectrometría de Masas , Metaboloma , Persona de Mediana Edad , Insuficiencia Multiorgánica/sangre , Insuficiencia Multiorgánica/etiología , Insuficiencia Multiorgánica/metabolismo , Neumonía Viral/sangre , Neumonía Viral/complicaciones , Neumonía Viral/epidemiología , Neumonía Viral/metabolismo , SARS-CoV-2
18.
J Proteome Res ; 19(11): 4428-4441, 2020 11 06.
Artículo en Inglés | MEDLINE | ID: mdl-32852212

RESUMEN

Quantitative nuclear magnetic resonance (NMR) spectroscopy of blood plasma is widely used to investigate perturbed metabolic processes in human diseases. The reliability of biochemical data derived from these measurements is dependent on the quality of the sample collection and exact preparation and analysis protocols. Here, we describe systematically, the impact of variations in sample collection and preparation on information recovery from quantitative proton (1H) NMR spectroscopy of human blood plasma and serum. The effects of variation of blood collection tube sizes and preservatives, successive freeze-thaw cycles, sample storage at -80 °C, and short-term storage at 4 and 20 °C on the quantitative lipoprotein and metabolite patterns were investigated. Storage of plasma samples at 4 °C for up to 48 h, freezing at -80 °C and blood sample collection tube choice have few and minor effects on quantitative lipoprotein profiles, and even storage at 4 °C for up to 168 h caused little information loss. In contrast, the impact of heat-treatment (56 °C for 30 min), which has been used for inactivation of SARS-CoV-2 and other viruses, that may be required prior to analytical measurements in low level biosecurity facilities induced marked changes in both lipoprotein and low molecular weight metabolite profiles. It was conclusively demonstrated that this heat inactivation procedure degrades lipoproteins and changes metabolic information in complex ways. Plasma from control individuals and SARS-CoV-2 infected patients are differentially altered resulting in the creation of artifactual pseudo-biomarkers and destruction of real biomarkers to the extent that data from heat-treated samples are largely uninterpretable. We also present several simple blood sample handling recommendations for optimal NMR-based biomarker discovery investigations in SARS CoV-2 studies and general clinical biomarker research.


Asunto(s)
Análisis Químico de la Sangre/normas , Recolección de Muestras de Sangre/instrumentación , Infecciones por Coronavirus , Lipoproteínas/sangre , Espectroscopía de Resonancia Magnética/métodos , Pandemias , Neumonía Viral , Artefactos , COVID-19 , Calor , Humanos , Reproducibilidad de los Resultados
19.
J Org Chem ; 85(6): 4079-4088, 2020 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-32070094

RESUMEN

The desire to photocontrol molecular properties ranging from materials to pharmacology using light as an external trigger with high spatiotemporal resolution led to the development of a broad range of photochromic scaffolds. Among them, azobenzenes are synthetically well accessible and show excellent fatigue resistance. Their photochromic properties vary with the substitution pattern and for different heteroarenes. However, the photochromism of 3(5)-substituted-1H-pryazoles has not yet been investigated, although this compound class offers interesting possibilities of metal ion coordination and hydrogen bond formation via its NH moiety. Herein, we present the results of an experimental and computational investigation of arylazo-3(5)-arylazo-1H-pyrazoles. To elucidate their properties, solvent and substitution effects on their light absorption, thermal half-lives, photostationary states, fatigue, and quantum yields were determined.

20.
J Gastrointest Surg ; 24(9): 1955-1961, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-31482409

RESUMEN

BACKGROUND: Currently, there are different competing techniques for the treatment of Zenker's diverticulum (ZD). To improve patient selection, we compared endoscopic laser-assisted diverticulotomy (ELAD) with transcervical myotomy (TCM) with regard to possible risk factors for treatment failure. METHODS: Data of ZD patients (n = 104) treated between 2004 and 2016 with either TCM (38%) or ELAD (62%) were analyzed retrospectively. Univariate and multivariate analyses were performed. RESULTS: TCM is associated with a higher morbidity (27.8% vs. 10.2%; p = 0.095) but lower recurrence rate (7.3% vs. 19.3%; p = 0.095). Preoperative reflux disease (OR 8.755; p = 0.021) was identified as an independent risk factor for complications. CONCLUSIONS: Although short-term outcome and symptom relief are similar, TCM tends to have a higher complication rate but better long-term results. Preoperative reflux disease is an independent risk factor for postoperative complications.


Asunto(s)
Miotomía , Divertículo de Zenker , Esofagoscopía , Humanos , Rayos Láser , Estudios Retrospectivos , Resultado del Tratamiento , Divertículo de Zenker/cirugía
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...