Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 128
1.
Funct Integr Genomics ; 24(3): 79, 2024 Apr 24.
Article En | MEDLINE | ID: mdl-38653845

Coronaviruses have been identified as pathogens of gastrointestinal and respiratory diseases in humans and various animal species. In recent years, the global spread of new coronaviruses has had profound influences for global public health and economies worldwide. As highly pathogenic zoonotic viruses, coronaviruses have become the focus of current research. Porcine Deltacoronavirus (PDCoV), an enterovirus belonging to the family of coronaviruses, has emerged on a global scale in the past decade and significantly influenced the swine industry. Moreover, PDCoV infects not only pigs but also other species, including humans, chickens and cattles, exhibiting a broad host tropism. This emphasizes the need for in-depth studies on coronaviruses to mitigate their potential threats. In this review, we provided a comprehensive summary of the current studies on PDCoV. We first reviewed the epidemiological investigations on the global prevalence and distribution of PDCoV. Then, we delved into the studies on the pathogenesis of PDCoV to understand the mechanisms how the virus impacts its hosts. Furthermore, we also presented some exploration studies on the immune evasion mechanisms of the virus to enhance the understanding of host-virus interactions. Despite current limitations in vaccine development for PDCoV, we highlighted the inhibitory effects observed with certain substances, which offers a potential direction for future research endeavors. In conclusion, this review summarized the scientific findings in epidemiology, pathogenesis, immune evasion mechanisms and vaccine development of PDCoV. The ongoing exploration of potential vaccine candidates and the insights gained from inhibitory substances have provided a solid foundation for future vaccine development to prevent and control diseases associated with PDCoV.


Coronavirus Infections , Deltacoronavirus , Immune Evasion , Swine Diseases , Viral Vaccines , Animals , Swine , Coronavirus Infections/immunology , Coronavirus Infections/prevention & control , Coronavirus Infections/virology , Coronavirus Infections/epidemiology , Deltacoronavirus/pathogenicity , Deltacoronavirus/immunology , Deltacoronavirus/genetics , Swine Diseases/virology , Swine Diseases/immunology , Swine Diseases/prevention & control , Swine Diseases/epidemiology , Viral Vaccines/immunology , Vaccine Development , Humans
2.
Langmuir ; 40(14): 7692-7700, 2024 Apr 09.
Article En | MEDLINE | ID: mdl-38546150

Porous thermosensitive hydrogels exhibit a more flexible strategy for freshwater capture compared to conventional hydrogels. This study employs molecular dynamics (MD) simulation to investigate the deswelling behavior of poly(N-isopropylacrylamide) (PNIPAM) grafted within the nanochannel, aiming to elucidate the deswelling elimination process at various temperatures. Notably, a distinct phase separation is observed at specific temperatures above the lower solution temperature (LCST). Furthermore, this study takes the effect of heat flux into account, wherein distinct heat fluxes lead to varying levels of phase separation between water and the polymer. Specifically, the number of hydrogen bonds, volume of polymer chains, and density distribution of water molecules are statistically analyzed to reveal the mechanism of phase separation in a thermosensitive hydrogel. These findings provide insight into the accelerated deswelling kinetics of the PNIPAM polymer chain, which has guiding significance for the field of water harvesting by the enhancement of the water release capacity in thermosensitive hydrogels.

3.
Cancer Causes Control ; 35(1): 55-62, 2024 Jan.
Article En | MEDLINE | ID: mdl-37540479

BACKGROUND: The use of antidepressants has increased over the years, but the relationship between antidepressant use and the risk of breast cancer is not uniform because of confounding factors. We aimed to assess the effect of antidepressants on breast cancer risk using a two-sample Mendelian randomization (MR) approach.stet METHODS: Secondary data analysis was performed on pooled data from genome-wide association studies based on single-nucleotide polymorphisms that were highly correlated with antidepressants, SSRI drugs, and serotonin and prolactin levels were selected as instrumental variables to evaluate the association between antidepressants and SSRI drugs and prolactin levels with breast cancer and ER+/ER- breast cancer. We then performed a test of the hypothesis that SSRI drugs elevate prolactin concentrations. We performed two-sample Mendelian randomization analyses using inverse variance weighting, MR-Egger regression, and weighted median methods, respectively. RESULTS: There was no significant risk association between antidepressant and SSRI use and the development of breast cancer, ER-positive or ER-negative breast cancer (P > 0.05), and serotonin concentration was not associated with breast cancer risk (P > 0.05). There was a positive causal relationship between prolactin levels and breast cancer (IVW, P = 0.02, OR = 1.058) and ER-positive breast cancer (Weighted median, P = 0.043, OR = 1.141; IVW, P = 0.009, OR = 1.125). Results in SSRI medication and prolactin levels showed no association between SSRI analogs and prolactin levels (P > 0.05). CONCLUSION: Large MR analysis showed that antidepressants as well as SSRI drugs were not associated with breast cancer risk and the SSRI-prolactin-breast cancer hypothesis did not hold in our analysis.


Breast Neoplasms , Humans , Female , Breast Neoplasms/epidemiology , Breast Neoplasms/genetics , Mendelian Randomization Analysis , Genome-Wide Association Study , Prolactin , Serotonin , Polymorphism, Single Nucleotide , Antidepressive Agents/adverse effects
4.
Wien Klin Wochenschr ; 2023 Nov 10.
Article En | MEDLINE | ID: mdl-37947877

BACKGROUND: Cannabis use is increasing annually but the relationship between cannabis use and cancer incidence is not uniform because of confounding factors. We aimed to assess the effect of cannabis use on cancer risk using a two-sample Mendelian randomization (MR) approach. METHODS: Secondary data analyses were performed on pooled data based on Genome-Wide Association Study (GWAS), selecting data from the ICC and UK-Biobank and 23andMeInc lifetime cannabis use and cannabis use disorder related to the substance use disorders working group from the Psychiatric Genomics Consortium, then selecting highly correlated SNPs as instrumental variables. The substance use disorders working group, iPSYCH, and deCODE GWAS data, and then highly correlated SNPs were selected as instrumental variables for two-sample Mendelian randomization analyses using inverse variance weighting, MR-Egger regression, and weighted median, respectively, to evaluate the relationship between lifetime cannabis use and nine tumors, and subsequently analyzed these results in the same way using cannabis use disorders. RESULTS: The risk of all cancers except breast cancer was not associated with lifetime cannabis use. Our inverse variance weighting method found that lifetime marijuana use reduced the breast cancer risk (P = 0.016, odds ratio [OR] = 0.981), and we subsequently conducted analyses of cannabis use disorders and cancer risk, which showed that cannabis use disorders elevated the risk of breast cancer (P = 0.007, OR = 1.007) as well as the risk of lung cancer (P = 0.014, OR = 1.122). CONCLUSION: Large MR analyses suggest that lifetime cannabis use may reduce breast cancer risk, but cannabis use disorder exacerbates the risk of breast and lung cancer. The mechanisms responsible for this outcome remain to be investigated.

5.
Environ Sci Pollut Res Int ; 30(44): 99735-99747, 2023 Sep.
Article En | MEDLINE | ID: mdl-37620695

Indoor dust is the main source of human exposure to brominated flame retardants (BFRs). In this study, in vitro colon-extended physiologically-based extraction test (CE-PBET) with Tenax as a sorptive sink was applied to evaluate the oral bioaccessibility of twenty-two polybrominated diphenyl ethers (PBDEs) and seven novel BFRs (NBFRs) via indoor dust ingestion. The mean bioaccessibilities of two NBFRs pentabromotoluene (PBT) and 1,2-Bis(2,4,6-tribromophenoxy) ethane (BTBPE) were first proposed, reaching 36.0% and 26.7%, respectively. In order to maintain homeostasis of the gastrointestinal tract, 0.4 g Tenax was added in CE-PEBT, which increased BFRs bioaccessibility by up to a factor of 1.4-1.9. The highest bioaccessibility of legacy PBDEs was tri-BDEs (73.3%), while 2-ethylhexyl-tetrabromo-benzoate (EHTBB), one of penta-BDE alternatives, showed the highest (62.2%) among NBFRs. The influence of food nutrients, liquid to solid (L/S) ratio, and octanol-water partition coefficient (Kow) on bioaccessibility was assessed. The oral bioaccessibility of BFRs increased with existence of protein or carbohydrate while lipid did the opposite. The bioaccessibilities of PBDEs and NBFRs were relatively higher with 200:1 L/S ratio. PBDEs bioaccessibility generally decreased with increasing LogKow. No significant correlation was observed between NBFRs bioaccessibility and LogKow. This study comprehensively evaluated the bioaccessibilities of legacy and emerging BFRs via dust ingestion using Tenax-assisted CE-PBET, and highlighted the significance to fully consider potential influencing factors on BFRs bioaccessibility in further human exposure estimation.


Air Pollution, Indoor , Flame Retardants , Humans , Dust/analysis , Flame Retardants/analysis , Halogenated Diphenyl Ethers/analysis , Air Pollution, Indoor/analysis , Gastrointestinal Tract/metabolism , Environmental Monitoring
6.
J Ethnopharmacol ; 317: 116778, 2023 Dec 05.
Article En | MEDLINE | ID: mdl-37328082

ETHNOPHARMACOLOGICAL RELEVANCE: Compound Kushen (Sophora flavescens Aiton) Injection (CKI) is a Chinese herbal injection made from extracts of Kushen and Baituling (Heterosmilax japonica Kunth), containing matrine (MAT), oxymatrine (OMT) and other alkaloids with significant anti-tumor activity, and is widely used as an adjuvant treatment for cancer in China. AIM OF THE STUDY: The existing systematic reviews/meta-analyses (SRs/MAs) were re-evaluated to provide a reference for the clinical application of CKI. MATERIALS AND METHODS: SRs/MAs of CKI adjuvant therapy for cancer-related diseases were searched in four English language databases: PubMed, Embase, Web of Science, and Cochrane Library, all from the time of database construction to October 2022. 5 researchers independently conducted literature search and identification according to the inclusion criteria, and the data of the final literature were independently extracted, and finally the AMSTAR 2 tool, PRISMA statement and GRADE classification were used to evaluate the methodological quality of the included SRs/MAs, the degree of completeness of reporting and the quality of evidence for outcome indicators. Database registration: PROSPERO ID:CRD42022361349. RESULTS: Eighteen SRs/MAs were finally included, with studies covering non-small cell lung cancer, primary liver cancer, gastric cancer, colorectal cancer, breast cancer, head and neck tumors, and cancer-related bone pain. The evaluation showed that the methodological quality of the included literature was extremely low, but most of the literature reported relatively complete entries; nine clinical effectiveness indicators for non-small cell lung cancer and digestive system tumors were rated as moderate in the GRADE quality of evidence, and the quality of other outcomes was low to very low. CONCLUSION: CKI is a potentially effective drug for the adjuvant treatment of neoplastic diseases and may be more convincing for the adjuvant treatment of non-small cell lung cancer and digestive system tumors; however, due to the low methodological and evidentiary quality of the current SRs, their effectiveness needs to be confirmed by more high-quality evidence-based medical evidence.


Antineoplastic Agents , Carcinoma, Non-Small-Cell Lung , Drugs, Chinese Herbal , Lung Neoplasms , Humans , Adjuvants, Immunologic , Adjuvants, Pharmaceutic , Antineoplastic Agents/therapeutic use , Carcinoma, Non-Small-Cell Lung/drug therapy , Drugs, Chinese Herbal/therapeutic use , Lung Neoplasms/drug therapy , Systematic Reviews as Topic
7.
Integr Cancer Ther ; 22: 15347354231164753, 2023.
Article En | MEDLINE | ID: mdl-37057304

INTRODUCTION: Traditional Chinese medicine (TCM) injections, as a relatively safe and low-cost treatment, have been widely used in the prevention and treatment of anthracyclines-induced cardiotoxicity in China. However, the quality of the relevant systematic reviews and meta-analyses published in recent years is uneven, so that the effectiveness and safety of TCM injections in preventing and treating anthracyclines-induced cardiotoxicity remain to be discussed. A systematic overview is therefore needed to provide a more advanced evidentiary reference for clinical practice. METHODS: Eight Chinese and English databases were searched by computer to screen the meta-analyses/systematic reviews on the efficacy of traditional Chinese medicine injections for the prevention and treatment of anthracyclines-induced cardiotoxicity from the database establishment to October 2022. The methodological quality and evidence quality of outcome indicators included in the study were evaluated by AMSTAR 2 tool, PRISMA statement and GRADE classification. RESULTS: A total of 7 articles were included in the study. The quality evaluation of AMSTAR 2 showed that 7 studies were extremely low-level; PRISMA stated that the evaluation results showed that the reports of 7 studies were of intermediate quality; The GRADE rating indicated that most of the evidence was of low quality. CONCLUSION: The methodological quality and evidence quality of meta-analysis/system evaluation concerning the prevention and treatment of anthracyclines-induced cardiotoxicity by Chinese medicine are currently low, and the effectiveness of Chinese medicine in the treatment of anthracyclines-induced cardiotoxicity needs more high-quality evidence-based evidence.


Anthracyclines , Cardiotoxicity , Drugs, Chinese Herbal , Humans , Anthracyclines/adverse effects , Antibiotics, Antineoplastic , Cardiotoxicity/drug therapy , Cardiotoxicity/etiology , Cardiotoxicity/prevention & control , Drugs, Chinese Herbal/therapeutic use , Medicine, Chinese Traditional
8.
Mol Plant Pathol ; 24(8): 999-1013, 2023 08.
Article En | MEDLINE | ID: mdl-37026481

Plants' response to pathogens is highly complex and involves changes at different levels, such as activation or repression of a vast array of genes. Recently, many studies have demonstrated that many RNAs, especially small RNAs (sRNAs), are involved in genetic expression and reprogramming affecting plant-pathogen interactions. The sRNAs, including short interfering RNAs and microRNAs, are noncoding RNA with 18-30 nucleotides, and are recognized as key genetic and epigenetic regulators. In this review, we summarize the new findings about defence-related sRNAs in the response to pathogens and our current understanding of their effects on plant-pathogen interactions. The main content of this review article includes the roles of sRNAs in plant-pathogen interactions, cross-kingdom sRNA trafficking between host and pathogen, and the application of RNA-based fungicides for plant disease control.


Host-Pathogen Interactions , MicroRNAs , Host-Pathogen Interactions/genetics , RNA, Small Interfering/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , RNA Interference , Plants/genetics , Plants/metabolism
9.
Funct Integr Genomics ; 23(1): 60, 2023 Feb 15.
Article En | MEDLINE | ID: mdl-36790562

Xenotransplantation with porcine organs has been recognized as a promising solution to alleviate the shortage of organs for human transplantation. Porcine endogenous retrovirus (PERV), whose proviral DNAs are integrated in the genome of all pig breeds, is a main microbiological risk for xenotransplantation. Over the last decades, some advances on PERVs' studies have been achieved. Here, we reviewed the current progress of PERVs including the classification, molecular structure, regulation, function in immune system, and potential risk in xenotransplantation. We also discussed the problem of insufficient study on PERVs as well as the questions need to be answered in the future work.


Endogenous Retroviruses , Swine , Animals , Humans , Transplantation, Heterologous/adverse effects , Endogenous Retroviruses/genetics , Molecular Structure
10.
Ecotoxicol Environ Saf ; 252: 114593, 2023 Mar 01.
Article En | MEDLINE | ID: mdl-36724708

Zinc, an essential trace mineral, plays a pivotal role in cell proliferation, maintenance of redox homeostasis, apoptosis, and aging. Serum zinc concentrations are reduced in patients with polycystic ovary syndrome (PCOS). However, the underlying mechanism of the effects of zinc deficiency on the female reproductive system, especially oocyte quality, has not been fully elucidated. Thus, we established an in vitro experimental model by adding N,N,N',N'-Tetrakis(2-pyridylmethyl) ethylenediamine (TPEN) into the culture medium, and to determine the potential regulatory function of zinc during porcine oocytes maturation. In the present study, we found that zinc deficiency caused aberrant meiotic progress, accompanied by the disrupted cytoskeleton structure in porcine oocytes. Zinc deficiency impaired mitochondrial function and dynamics, leading to the increase of reactive oxygen species (ROS) and acetylation level of the antioxidative enzyme superoxide dismutase 2 (SOD2), eventually induced the occurrence of oxidative stress and early apoptosis. Moreover, zinc deficiency perturbed cytosolic Ca2+ homeostasis, lipid droplets formation, demonstrating the aberrant mitochondrial function in porcine oocytes. Importantly, we found that zinc deficiency in porcine oocytes induced the occurrence of mitophagy by activating the PTEN-induced kinase 1/Parkin signaling pathway. Collectively, our findings demonstrated that zinc was a critical trace mineral for maintaining oocyte quality by regulating mitochondrial function and autophagy in porcine oocytes.


Trace Elements , Swine , Female , Animals , Trace Elements/metabolism , Mitophagy , Oocytes/metabolism , Zinc/toxicity , Zinc/metabolism , Reactive Oxygen Species/metabolism , Apoptosis
11.
Microb Pathog ; 176: 106006, 2023 Mar.
Article En | MEDLINE | ID: mdl-36746315

Chronic respiratory disease (CRD) caused by Mycoplasma gallisepticum (MG) in chickens leads to enormous economic damage to the poultry industry yearly. The active components and mechanism of action of the traditional herbal remedy Ephedra houttuynia powder (EHP), which had been approved for clinical treatment against MG infection in China, remain unknown. In this study, the active components of EHP against MG were screened using a network pharmacological method, additionally, we studied the mechanism of action of the screened results (quercetin (QUE)). The findings demonstrated that QUE was an essential element of EHP against MG infection, effectively attenuating MG-induced oxidative stress and activation of the TLR2/MyD88/NF-κB pathway. Following QUE therapy, IL-1, IL-6, and TNF-α content and expression were downregulated, whereas IL-4 and IL-10 expression were upregulated, eventually suppressing the inflammatory response both in vitro and in vivo. Together, this study presents a strong rationale for using QUE as a therapeutic strategy to inhibit MG infection-induced inflammatory damage and oxidative stress.


Mycoplasma Infections , Mycoplasma gallisepticum , Animals , NF-kappa B/metabolism , Chickens/metabolism , Quercetin/pharmacology , Myeloid Differentiation Factor 88/metabolism , Mycoplasma gallisepticum/metabolism , Toll-Like Receptor 2/metabolism , Signal Transduction , Oxidative Stress , Mycoplasma Infections/veterinary
12.
Plant Dis ; 107(5): 1463-1470, 2023 May.
Article En | MEDLINE | ID: mdl-36205689

Kurstakin is the latest discovered family of lipopeptides secreted by Bacillus spp. In this study, the effects of kurstakin on the direct antagonism, multicellularity, and disease control ability of Bacillus cereus AR156 were explored. An insertion mutation in the nonribosomal peptide synthase responsible for kurstakin synthesis led to a significant reduction of antagonistic ability of AR156 against the plant-pathogenic fungi Rhizoctonia solani, Ascochyta citrullina, Fusarium graminearum, and F. oxysporum f. sp. cubense. The loss of kurstakin synthesis ability significantly impaired the swarming motility of AR156 and reduced biofilm formation and amyloid protein accumulation. Although the loss of kurstakin synthesis ability did not reduce the competitiveness of AR156 under laboratory conditions, the colonization and environmental adaptability of the mutant was significantly weaker than that of wild-type AR156 on rice leaves. The cell surface of wild-type AR156 colonizing the leaf surface was covered by a thick biofilm matrix under a scanning electron microscope, but not the mutant. The colonization ability on rice roots and control efficacy against rice sheath blight disease of the mutant were also impaired. Thus, kurstakin participates in the control of plant diseases by B. cereus AR156 through directly inhibiting the growth of pathogenic fungi and improving long-term environmental adaptability and colonization of AR156 on the host surface by triggering multicellularity. This study explored the multiple functions of kurstakin in plant disease control by B. cereus.


Bacillus cereus , Oryza , Bacillus cereus/genetics , Oryza/microbiology , Plant Diseases/microbiology
13.
Cell Prolif ; 56(1): e13335, 2023 Jan.
Article En | MEDLINE | ID: mdl-36125441

OBJECTIVES: Phenanthrene (PHE) is one of the most abundant polycyclic aromatic hydrocarbons (PAHs), which is a widespread environmental contaminant. Various studies showed that PHE has adverse impacts on animals and human health. It has been shown that PHE exposure induced follicular atresia and endocrine dyscrasia in female mice. However, the potential mechanism regarding how PHE affects female reproductive system especially the oocyte quality has not been elucidated. METHODS AND RESULTS: In this study, we set up PHE exposure model and found that PHE exposure compromised oocytes maturation competence by inhibiting spindle assembly and chromosomes alignment. Moreover, PHE exposure induced mitochondrial dysfunction and endoplasmic reticulum (ER) stress, leading to increased reactive oxygen species (ROS) and aberrant calcium levels in cytoplasm, eventually induced oxidative stress and DNA damage in oocytes. Furthermore, we found that oral administration of PHE caused the occurrence of oxidative stress and apoptosis in female ovary. In addition, the oocyte exhibited aberrant spindle morphology and failure of actin cap formation in metaphase II oocytes. CONCLUSIONS: Taken together, our study demonstrated that mitochondrial dysfunction and ER stress-induced oxidative stress and DNA damage are the major cause of poor oocyte quality after PHE exposure.


Mitochondria , Phenanthrenes , Animals , Female , Humans , Mice , Follicular Atresia , Meiosis , Mitochondria/metabolism , Oocytes/metabolism , Oxidative Stress , Phenanthrenes/pharmacology , Phenanthrenes/metabolism , Reactive Oxygen Species/metabolism , Endoplasmic Reticulum Stress
14.
Front Vet Sci ; 9: 972245, 2022.
Article En | MEDLINE | ID: mdl-36225794

Natural products and their unique polypharmacology offer significant advantages for finding novel therapeutics particularly for the treatment of complex diseases. Meanwhile, Traditional Chinese Medicine exerts overall clinical benefits through a multi-component and multi-target approach. In this study, we used the previously established co-infection model of Mycoplasma gallisepticum and Escherichia coli as a representative of complex diseases. A new combination consisting of 6 herbs were obtained by using network pharmacology combined with transcriptomic analysis to reverse screen TCMs from the Chinese medicine database, containing Isatdis Radix, Forsythia Fructus, Ginkgo Folium, Mori Cortex, Licorice, and Radix Salviae. The results of therapeutic trials showed that the Chinese herbal compounds screened by the target network played a good therapeutic effect in the case of co-infection. In summary, these data suggested a new method to validate target combinations of natural products that can be used to optimize their multiple structure-activity relationships to obtain drug-like natural product derivatives.

15.
Materials (Basel) ; 15(19)2022 Oct 03.
Article En | MEDLINE | ID: mdl-36234210

Mechanotransduction is the process by which cells convert external forces and physical constraints into biochemical signals that control several aspects of cellular behavior. A number of approaches have been proposed to investigate the mechanisms of mechanotransduction; however, it remains a great challenge to develop a platform for dynamic multivariate mechanical stimulation of single cells and small colonies of cells. In this study, we combined polydimethylsiloxane (PDMS) and PDMS/Mxene nanoplatelets (MNPs) to construct a soft bilayer nanocomposite for extracellular mechanical stimulation. Fast backlash actuation of the bilayer as a result of near-infrared irradiation caused mechanical force stimulation of cells in a controllable manner. The excellent controllability of the light intensity and frequency allowed backlash bending acceleration and frequency to be manipulated. As gastric gland carcinoma cell line MKN-45 was the research subject, mechanical force loading conditions could trigger apoptosis of the cells in a stimulation duration time-dependent manner. Cell apoptotic rates were positively related to the duration time. In the case of 6 min mechanical force loading, apoptotic cell percentage rose to 34.46% from 5.5% of the control. This approach helps apply extracellular mechanical forces, even with predesigned loading cycles, and provides a solution to study cell mechanotransduction in complex force conditions. It is also a promising therapeutic technique for combining physical therapy and biomechanics.

16.
Mol Plant Microbe Interact ; 35(8): 659-671, 2022 Aug.
Article En | MEDLINE | ID: mdl-36043906

Bacillus spp. are known for their ability to control plant diseases; however, the mechanism of disease control by Bacillus spp. is still unclear. Previously, bacterial organic acids have been implicated in the process of disease suppression. We extracted the total organic acid from Bacillus cereus AR156 culture filtrate and identified oxalic acid (OA) as the programmed cell death-inducing factor. OA strongly suppressed the lesion caused by Botrytis cinerea without significant antagonism against the fungus. Low concentration of OA produced by Bacillus spp. inhibited cell death caused by high concentrations of OA in a concentration- and time-dependent manner. Pretreatment with a low concentration of OA led to higher accumulation of active oxygen-scavenging enzymes in tomato leaves and provoked the expression of defense-related genes. The activation of gene expression relied on the jasmonic acid (JA) signaling pathway but not the salicylic acid (SA) pathway. The disease suppression capacity of OA was confirmed on wild-type tomato and its SA accumulation-deficient line, while the control effect was diminished in JA synthesis-deficient mutant, suggesting that the OA-triggered resistance relied on JA and ethylene (ET) signaling transduction. OA secretion ability was widely distributed among the tested Bacillus strains and the final environmental OA concentration was under strict regulation by a pH-sensitive degradation mechanism. This study provides the first systematic analysis on the role of low-concentration OA secreted and maintained by Bacillus spp. in suppression of gray mold disease and determines the dependence of OA-mediated resistance on the JA/ET signaling pathway. [Formula: see text] The author(s) have dedicated the work to the public domain under the Creative Commons CC0 "No Rights Reserved" license by waiving all of his or her rights to the work worldwide under copyright law, including all related and neighboring rights, to the extent allowed by law, 2022.


Bacillus , Solanum lycopersicum , Botrytis/physiology , Cyclopentanes/metabolism , Gene Expression Regulation, Plant , Solanum lycopersicum/genetics , Oxalic Acid , Oxylipins/metabolism , Plant Diseases/microbiology , Salicylic Acid/metabolism
17.
Free Radic Biol Med ; 188: 386-394, 2022 08 01.
Article En | MEDLINE | ID: mdl-35792241

Maternal diabetes has been widely reported to adversely affect oocyte quality. Although various molecules and pathways may be involved in this process, strategies to prevent maternal diabetes-induced deterioration of oocyte quality remain unexplored. Melatonin is synthesized by the pineal gland and has been shown to have beneficial effects on oocyte quality owing to its antioxidative function. In the present study, we found that the exposure of oocytes of diabetic mice to melatonin, in vitro, alleviated aberrant oocyte maturation competence. Notably, melatonin supplementation attenuated defects in spindle organization and chromosome alignment by mediating the expression of TPX2 and pericentrin localization. Importantly, melatonin eliminated the accumulation of reactive oxygen species and increased the cytosolic Ca2+ levels in diabetic oocytes by maintaining mitochondrial function. Moreover, the occurrence of autophagy and apoptosis was reversed in diabetic oocytes after melatonin exposure via decreased LC3ß expression. Collectively, our findings provide evidence that melatonin supplementation can protect oocytes from maternal diabetes-related meiotic defects and poor egg quality, providing a potential strategy for improving oocyte quality in assisted reproductive technologies.


Diabetes Mellitus, Experimental , Melatonin , Animals , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Experimental/metabolism , Meiosis , Melatonin/metabolism , Melatonin/pharmacology , Melatonin/therapeutic use , Mice , Mitochondria/metabolism , Oocytes , Reactive Oxygen Species/metabolism
18.
Environ Int ; 167: 107413, 2022 09.
Article En | MEDLINE | ID: mdl-35863238

Perfluorooctanoic acid (PFOA) is a synthetic perfluorinated compound that is extensively used as an integral surfactant in commercial production. Owing to its hydrophilicity and persistence, PFOA can accumulate in living organisms and induce severe disease in animals and humans. It has been reported that PFOA exposure can affect ovarian function and induce reproductive toxicity; however, the effects and potential mechanism of PFOA exposure during gestation on early embryonic development and offspring remain unclear. This study found that PFOA exposure in vitro disrupted spindle assembly and chromosome alignment during the first cleavage of early mouse embryos, which impacted early embryonic cleavage and blastocyst formation. Moreover, PFOA exposure caused mitochondrial dysfunction and oxidative stress by inducing aberrant Ca2+ levels, liquid drops(LDs), and mitochondrial membrane potential in the 2-cell stage. Furthermore, we found that PFOA exposure resulted in DNA damage, autophagy, and apoptosis in 2-cell stage by inhibiting SOD2 function. Gestational exposure to PFOA significantly increased ovarian apoptosis and disrupted follicle development in F1 offspring. In addition, oocyte maturation competence was decreased in F1 offspring. Finally, single-cell transcriptome analysis revealed that PFOA-induced oocyte deterioration was caused by mitochondrial dysfunction and apoptosis in the F1 offspring. In summary, our results indicated that gestational exposure to PFOA had potential toxic effects on ovarian function and led to a higher incidence of meiotic defects in F1 female offspring.


Caprylates , Mitochondria , Animals , Caprylates/toxicity , Embryonic Development , Female , Fluorocarbons , Humans , Mice , Oocytes , Pregnancy
19.
Funct Integr Genomics ; 22(4): 553-563, 2022 Aug.
Article En | MEDLINE | ID: mdl-35412198

Transgenic technology is now widely used in biomedical and agricultural fields. Transgenesis is commonly achieved through random integration which might cause some uncertain consequences. The site-specific integration could avoid this disadvantage. This study aimed to screen and validate the best safe harbor (SH) locus for efficient porcine transgenesis. First, the cells carrying the EGFP reporter construct at four different SH loci (ROSA26, AAVS1, H11 and COL1A1) were achieved through CRSIPR/Cas9-mediated HDR. At the COL1A1 and ROSA26 loci, a higher mRNA and protein expression of EGFP was detected, and it was correlated with a lower level of DNA methylation of the EGFP promoter, hEF1α. A decreased H3K27me3 modification of the hEF1α promoter at the COL1A1 locus was also detected. For the safety of transgenesis at different SH locus, we found that transgenesis could relatively alter the expression of the adjacent endogenous genes, but the influence was limited. We also did not observe any off-target cleavage for the selected sgRNAs of the COL1A1 and ROSA26 loci. In conclusion, the COL1A1 and ROSA26 were confirmed to be the best two SH loci with the COL1A1 being more competitive for porcine transgenesis. This work would greatly facilitate porcine genome engineering and transgenic pig production.


Gene Transfer Techniques , Genome , Animals , Animals, Genetically Modified , Promoter Regions, Genetic , Swine/genetics
20.
Poult Sci ; 101(4): 101706, 2022 Apr.
Article En | MEDLINE | ID: mdl-35121233

Mycoplasma gallisepticum (MG) is an avian pathogen that commonly causes respiratory diseases in poultry. Methylsulfonylmethane (MSM) is a sulfur-containing natural compound that could alleviate inflammatory injury through its excellent anti-inflammatory and antioxidant properties. However, it is still unclear whether MSM prevents MG infection. The purpose of this study is to determine whether MSM has mitigative effects on MG-induced inflammatory injury in chicken and chicken like macrophages (HD11 cells). In this research, White Leghorn chickens and HD11 cells were used to build the MG-infection model. Besides, the protective effects of MSM against MG infection were evaluated by detecting MG colonization, histopathological changes, oxidative stress and inflammatory injury of trachea, and HD11 cells. The results revealed that MG infection induced inflammatory injury and oxidative stress in trachea and HD11 cells. However, MSM treatment significantly ameliorated oxidative stress, partially alleviated the abnormal morphological changes and reduced MG colonization under MG infection. Moreover, MSM reduced the mRNA expression of proinflammatory cytokines-related genes and decreased the number of death cells under MG infection. Importantly, the protective effects of MSM were associated with suppression of nuclear factor-kappa B (NF-κB) and extracellular signal-related kinases (ERK)/Jun amino terminal kinases (JNK)-mitogen-activated protein kinases (MAPK) pathway in trachea and HD11 cells. These results proved that MSM has protective effects on MG-induced inflammation in chicken, and supplied a better strategy for the protective intervention of this disease.


Mycoplasma Infections , Mycoplasma gallisepticum , Poultry Diseases , Animals , Chickens/metabolism , Dimethyl Sulfoxide , Inflammation/drug therapy , Inflammation/veterinary , JNK Mitogen-Activated Protein Kinases/metabolism , Mycoplasma Infections/drug therapy , Mycoplasma Infections/veterinary , Mycoplasma gallisepticum/physiology , NF-kappa B/metabolism , Poultry Diseases/drug therapy , Signal Transduction , Sulfones , Trachea/metabolism
...