Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Biomed Inform ; 156: 104672, 2024 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-38857738

RESUMEN

In drug development and clinical application, drug-drug interaction (DDI) prediction is crucial for patient safety and therapeutic efficacy. However, traditional methods for DDI prediction often overlook the structural features of drugs and the complex interrelationships between them, which affect the accuracy and interpretability of the model. In this paper, a novel dual-view DDI prediction framework, DAS-DDI is proposed. Firstly, a drug association network is constructed based on similarity information among drugs, which could provide rich context information for DDI prediction. Subsequently, a novel drug substructure extraction method is proposed, which could update the features of nodes and chemical bonds simultaneously, improving the comprehensiveness of the feature. Furthermore, an attention mechanism is employed to fuse multiple drug embeddings from different views dynamically, enhancing the discriminative ability of the model in handling multi-view data. Comparative experiments on three public datasets demonstrate the superiority of DAS-DDI compared with other state-of-the-art models under two scenarios.

2.
Artículo en Inglés | MEDLINE | ID: mdl-38536684

RESUMEN

Molecular property prediction is an important task in drug discovery. However, experimental data for many drug molecules are limited, especially for novel molecular structures or rare diseases which affect the accuracy of many deep learning methods that rely on large training datasets. To this end, we propose PG-DERN, a novel few-shot learning model for molecular property prediction. A dual-view encoder is introduced to learn a meaningful molecular representation by integrating information from node and subgraph. Next, a relation graph learning module is proposed to construct a relation graph based on the similarity between molecules, which improves the efficiency of information propagation and the accuracy of property prediction. In addition, we use a MAML-based meta-learning strategy to learn well-initialized meta-parameters. In order to guide the tuning of meta-parameters, a property-guided feature augmentation module is designed to transfer information from similar properties to the novel property to improve the comprehensiveness of the feature representation of molecules with novel property. A series of comparative experiments on four benchmark datasets demonstrate that the proposed PG-DERN outperforms state-of-the-art methods.

3.
BMC Genomics ; 24(1): 557, 2023 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-37730555

RESUMEN

BACKGROUND: Drug-target binding affinity (DTA) prediction is important for the rapid development of drug discovery. Compared to traditional methods, deep learning methods provide a new way for DTA prediction to achieve good performance without much knowledge of the biochemical background. However, there are still room for improvement in DTA prediction: (1) only focusing on the information of the atom leads to an incomplete representation of the molecular graph; (2) the self-supervised learning method could be introduced for protein representation. RESULTS: In this paper, a DTA prediction model using the deep learning method is proposed, which uses an undirected-CMPNN for molecular embedding and combines CPCProt and MLM models for protein embedding. An attention mechanism is introduced to discover the important part of the protein sequence. The proposed method is evaluated on the datasets Ki and Davis, and the model outperformed other deep learning methods. CONCLUSIONS: The proposed model improves the performance of the DTA prediction, which provides a novel strategy for deep learning-based virtual screening methods.


Asunto(s)
Descubrimiento de Drogas , Redes Neurales de la Computación , Secuencia de Aminoácidos , Aprendizaje Automático Supervisado
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA