Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 3 de 3
1.
Front Immunol ; 15: 1364329, 2024.
Article En | MEDLINE | ID: mdl-38698844

Introduction: Within tumor microenvironment, the presence of preexisting antitumor CD8+ T Q7 cells have been shown to be associated with a favorable prognosis in most solid cancers. However, in the case of prostate cancer (PCa), they have been linked to a negative impact on prognosis. Methods: To gain a deeper understanding of the contribution of infiltrating CD8+ T cells to poor prognosis in PCa, the infiltration levelsof CD8+ T cells were estimated using the TCGA PRAD (The Cancer Genome Atlas Prostate Adenocarcinoma dataset) and MSKCC (Memorial Sloan Kettering Cancer Center) cohorts. Results: Bioinformatic analyses revealed that CD8+ T cells likely influence PCa prognosis through increased expression of immune checkpoint molecules and enhanced recruitment of regulatory T cells. The MLXIPL was identified as the gene expressed in response to CD8+ T cell infiltration and was found to be associated with PCa prognosis. The prognostic role of MLXIPL was examined in two cohorts: TCGA PRAD (p = 2.3E-02) and the MSKCC cohort (p = 1.6E-02). Subsequently, MLXIPL was confirmed to be associated with an unfavorable prognosis in PCa, as evidenced by an independent cohort study (hazard ratio [HR] = 2.57, 95% CI: 1.42- 4.65, p = 1.76E-03). Discussion: In summary, the findings suggested that MLXIPL related to tumor-infiltrating CD8+ T cells facilitated a poor prognosis in PCa.


CD8-Positive T-Lymphocytes , Lymphocytes, Tumor-Infiltrating , Prostatic Neoplasms , Tumor Microenvironment , Humans , CD8-Positive T-Lymphocytes/immunology , Male , Prostatic Neoplasms/immunology , Prostatic Neoplasms/pathology , Prostatic Neoplasms/mortality , Prostatic Neoplasms/genetics , Lymphocytes, Tumor-Infiltrating/immunology , Lymphocytes, Tumor-Infiltrating/metabolism , Prognosis , Tumor Microenvironment/immunology , Biomarkers, Tumor , Aged , Gene Expression Regulation, Neoplastic
2.
J Adv Res ; 51: 161-179, 2023 09.
Article En | MEDLINE | ID: mdl-36334887

INTRODUCTION: Meteorin-like hormone (Metrnl) is ubiquitously expressed in skeletal muscle, heart, and adipose with beneficial roles in obesity, insulin resistance, and inflammation. Metrnl is found to protect against cardiac hypertrophy and doxorubicin-induced cardiotoxicity. However, its role in diabetic cardiomyopathy (DCM) is undefined. OBJECTIVES: We aimed to elucidate the potential roles of Metrnl in DCM. METHODS: Gain- andloss-of-function experimentswere utilized to determine the roles of Metrnl in the pathological processes of DCM. RESULTS: We found that plasma Metrnl levels, myocardial Metrnl protein and mRNA expressions were significantly downregulated in both streptozotocin (STZ)-induced (T1D) mice and leptin receptor deficiency (db/db) (T2D) mice. Cardiac-specific overexpression (OE) of Metrnl markedly ameliorated cardiac injury and dysfunction in both T1D and T2D mice. In sharp contrast, specific deletion of Metrnl in the heart had the opposite phenotypes. In parallel, Metrnl OE ameliorated, whereas Metrnl downregulation exacerbated high glucose (HG)-elicited hypertrophy, apoptosis and oxidative damage in primary neonatal rat cardiomyocytes. Antibody-induced blockade of Metrnl eliminated the effects of benefits of Metrnl in vitro and in vivo. Mechanistically, Metrnl activated the autophagy pathway and inhibited the cGAS/STING signaling in a LKB1/AMPK/ULK1-dependent mechanism in cardiomyocytes. Besides, Metrnl-induced ULK1 phosphorylation facilitated the dephosphorylation and mitochondrial translocation of STING where it interacted with tumor necrosis factor receptor-associated factor 2 (TRAF2), a scaffold protein and E3 ubiquitin ligase that was responsible for ubiquitination and degradation of STING, rendering cardiomyocytes sensitive to autophagy activation. CONCLUSION: Thus, Metrnl may be an attractive therapeutic target or regimen for treating DCM.


Diabetes Mellitus, Type 1 , Diabetes Mellitus, Type 2 , Diabetic Cardiomyopathies , Animals , Mice , Rats , AMP-Activated Protein Kinases/genetics , AMP-Activated Protein Kinases/metabolism , AMP-Activated Protein Kinases/pharmacology , Autophagy , Autophagy-Related Protein-1 Homolog/metabolism , Diabetes Mellitus, Type 1/metabolism , Diabetes Mellitus, Type 1/pathology , Diabetes Mellitus, Type 2/metabolism , Diabetes Mellitus, Type 2/pathology , Diabetic Cardiomyopathies/metabolism , Diabetic Cardiomyopathies/pathology , Myocytes, Cardiac , Nucleotidyltransferases/metabolism , Nucleotidyltransferases/pharmacology
3.
Cell Death Dis ; 13(9): 824, 2022 09 26.
Article En | MEDLINE | ID: mdl-36163178

Oxidative stress is a vital contributor to the development and progression of diabetes-accelerated atherosclerosis. Nuclear factor erythroid 2-related factor 2 (Nrf2) is a well-known molecule that participates in cellular defense against oxidative stress. Utilizing luciferase reporter assay from 379 natural products, we reported here that Ginsenoside Rb1 played a dual role in inhibiting Kelch-like ECH-associated protein 1 (Keap1) and p47phox luciferase reporter activities. In endothelial cells (ECs), Rb1 pretreatment enhanced cell viability, reduced oxidative stress, inflammation, endothelial-mesenchymal transition (EndMT), and apoptosis, as well as ameliorated mitochondrial quality following oxidized low-density lipoprotein (ox-LDL) plus high glucose (HG) challenge. Rb1 directly bound to Keap1 and promoted its ubiquitination and proteasomal degradation dependent on lysine residues (K108, K323, and K551) by recruiting the E3 ligase synovial apoptosis inhibitor 1 (SYVN1), leading to Nrf2 dissociation from Keap1, Nrf2 nuclear translocation, Nrf2/PGC-1α complex formation. We further identified that Rb1 could bind to p47phox and reduce its phosphorylation and membrane translocation, thereby disrupting the assembly of the NOX2 complex. Importantly, Rb1-mediated preservation of cytoplasmic p47phox stabilized and contributed to Nrf2 activation. Additionally, we revealed that Rb1 reduced aortic atherosclerotic plaque formation along with reductions in oxidative stress and inflammatory response in streptozotocin (STZ)-induced ApoE-/- mice, but not in ApoE-/- mice with deficiency of Nrf2 and PGC-1α. Collectively, we demonstrated that Rb1, which directly targeted Keap1 and p47phox in ECs, may be an attractive candidate for the treatment of atherosclerosis in diabetes.


Atherosclerosis , Biological Products , Diabetes Mellitus , Animals , Mice , Apolipoproteins E/metabolism , Atherosclerosis/drug therapy , Atherosclerosis/metabolism , Diabetes Mellitus/metabolism , Endothelial Cells/metabolism , Ginsenosides , Glucose/metabolism , Kelch-Like ECH-Associated Protein 1/metabolism , Lipoproteins, LDL/metabolism , Lipoproteins, LDL/pharmacology , Luciferases/metabolism , Lysine/metabolism , NF-E2-Related Factor 2/metabolism , Oxidative Stress , Streptozocin , Ubiquitin-Protein Ligases/metabolism
...