Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Langmuir ; 2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-39017586

RESUMEN

Silicone rubber has broad applications in the field of industrial engineering due to its stable physical and chemical properties. However, the superhydrophobic properties, of silicone rubber, especially large deformation superhydrophobic properties, were not satisfactory for many harsh application environments and complex engineering structures. Here, we report the preparation of superhydrophobic tensile designable silicone rubber composites by a mixed deposition process that included powder deposition and smoke deposition. The infrared test showed that the deposited powder from silicone rubber combustion was mainly composed of SiO2 and short chain siloxane. The mixed deposited surface with a rich micro-nanostructure, which was the key to the formation of superhydrophobic properties. The water contact angle (WCA) and sliding angle (SA) of coating surface could reach 157.6° and 5° ± 1°, respectively, and the tensile designability of superhydrophobic surface is closely related to the prestretched process. In addition, bounce tests, high temperature tests, and solvent resistance tests showed the application potential of modified silicone rubber composites in the field of engineering.

2.
Macromolecules ; 57(11): 5130-5142, 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38882199

RESUMEN

Understanding and predicting the mechanical and conformational properties of conjugated polymer (CP) thin films are a central focus in flexible electronic device research. Employing molecular dynamics simulations with an architecture-transferable chemistry-specific coarse-grained (CG) model of poly(3-alkylthiophene)s (P3ATs), developed by using an energy renormalization approach, we investigate the mechanical and conformational behavior of P3AT thin films during deformation. The density profiles and measures of local mobility identify a softer interfacial layer for all films, the thickness of which does not depend on M w or side-chain length. Remarkably, Young's modulus measured via nanoindentation is more sensitive to M w than for tensile tests, which we attribute to distinct deformation mechanisms. High-M w thin films show increased toughness, whereas longer side-chain lengths of P3AT resulted in lower Young's modulus. Fractures in low-M w thin films occur through chain pullout due to insufficient chain entanglement and crazing in the plastic region. Importantly, stretching promoted both chain alignment and longer conjugation lengths of P3AT, potentially enhancing its electronic properties. For instance, at room temperature, stretching P3HT thin films to 150% increases the conjugated length of P3HT thin films from 2.7 nm to 4.7 nm, aligning with previous experimental findings and all-atom simulation results. Furthermore, high-M w thin films display elevated friction forces due to the chain accumulation on the indenter, with negligible variations in the friction coefficient across all thin film systems. These findings offer valuable insights that enhance our understanding and guide the rational design of CP thin films in flexible electronics.

3.
Materials (Basel) ; 17(5)2024 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-38473548

RESUMEN

Polyvinyl chloride (PVC) foam, valued for its mechanical and thermal properties along with cost-effectiveness, is extensively utilized across diverse industries. However, its high volatile organic compound (VOC) emissions hinder its adoption in eco-friendly synthetic leather. This study proposes a solution by optimizing the formulation design and foaming processes and achieving mechanical property enhancement via carbon-fiber-reinforced PVC composite foam (CF/PVC). The aim is to reduce PVC usage via enhancing its intrinsic properties. Systematic investigations were carried out on the impact of foaming raw materials, foaming processes, fiber content, and fiber length on the foaming performance, mechanical properties, and VOC emissions. The material formulation and process parameters were successfully optimized. Further assessment of various indicators such as the density, mechanical properties, and tear resistance of synthetic leather samples confirmed that the innovative CF/PVC foam developed in this study meets the requirements for automotive interior applications. Notably, the tensile strength and tear resistance of CF/PVC composite synthetic leather increased by 50% and 29%, respectively, compared to pure PVC, while VOC emissions decreased by 28%. It is anticipated that a more pronounced reduction in VOC emissions will be achieved in practical automotive interior leather applications when further considering the reinforcing effect of fibers, which leads to a reduction in PVC usage. The findings present a technical reference for innovative applications, aiming to enhance PVC foam performance and minimize emissions.

4.
Polymers (Basel) ; 16(6)2024 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-38543351

RESUMEN

This study addresses the challenge of achieving foam with a high expansion ratio and poor mechanical properties, caused by the low melt viscosity of semi-crystalline polypropylene (PP). We systematically employ a modification approach involving blending PP with polyolefin elastomers (POE), irradiation crosslinking, and fiber reinforcement to prepare fiber-reinforced crosslinked PP/POE composite foam. Through optimization and characterization of material composition and processing conditions, the obtained fiber-reinforced crosslinked PP/POE composite foam exhibits both low density and high performance. Specifically, at a crosslinking degree of 12%, the expansion ratio reaches 16 times its original value, and a foam density of 0.057 g/cm3 is reduced by 36% compared to the non-crosslinked PP/POE system with a density of 0.089 g/cm3. The density of the short-carbon-fiber-reinforced crosslinked sCF/PP/POE composite foam is comparable to that of the crosslinked PP/POE system, but the tensile strength reaches 0.69 MPa, representing a 200% increase over the crosslinked PP/POE system and a 41% increase over the non-crosslinked PP/POE system. Simultaneously, it exhibits excellent impact strength, tear resistance, and low heat shrinkage. Irradiation crosslinking is beneficial for enhancing the melt strength and resistance to high temperature thermal shrinkage of PP/POE foam, while fiber reinforcement contributes significantly to improving mechanical properties. These achieve a good complementary effect in low-density and high-performance PP foam modification.

5.
Polymers (Basel) ; 16(6)2024 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-38543376

RESUMEN

The inherent π-π interfacial interaction between carbon nanotubes (CNTs) and polystyrene (PS) makes the CNT/PS composite a representative thermoplastic nanocomposite. However, the strong van der Waals force among CNTs poses challenges to achieving effective dispersion. This review provides an overview of various CNT functionalization methods for CNT/PS composites, encompassing covalent grafting with PS-related polymers and non-covalent modification. A focus in this section involves the pre-introduction surface modification of CNTs with PS or PS-related polymers, substantially enhancing both CNT dispersibility and interfacial compatibility within the PS matrix. Furthermore, a comprehensive summary of the mechanical, electrical, thermal, and electromagnetic shielding properties of CNT/PS nanocomposites is provided, offering an overall understanding of this material. The surface modification methods of CNTs reviewed in this paper can be extended to carbon material/aromatic polymer composites, assisting researchers in customizing the optimal surface modification methods for CNTs, maximizing their dispersibility, and fully unleashing the various properties of CNTs/polymer composites. Additionally, high-performance CNTs/PS composites prepared using appropriate CNT modification methods have potential applications in areas such as electronic devices, sensors, and energy storage and conversion.

6.
Polymers (Basel) ; 16(3)2024 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-38337219

RESUMEN

To address the challenge of balancing the mechanical, thermal insulation, and flame-retardant properties of building insulation materials, this study presented a facile approach to modify the rigid polyurethane foam composites (RPUFs) via commercial expandable graphite (EG), ammonium polyphosphate (APP), and silica aerogel (SA). The resulting EG/APP/SA/RPUFs exhibited low thermal conductivity close to neat RPUF. However, the compressive strength of the 6EG/2APP/SA/RPUF increased by 49% along with achieving a V-0 flame retardant rating. The residual weight at 700 °C increased from 19.2 wt.% to 30.9 wt.%. Results from cone calorimetry test (CCT) revealed a 9.2% reduction in total heat release (THR) and a 17.5% decrease in total smoke production (TSP). The synergistic flame-retardant mechanism of APP/EG made significant contribution to the excellent flame retardant properties of EG/APP/SA/RPUFs. The addition of SA played a vital role in reducing thermal conductivity and enhancing mechanical performance, effectively compensating for the shortcomings of APP/EG. The cost-effective EG/APP/SA system demonstrates a positive ternary synergistic effect in achieving a balance in RPUFs properties. This study provides a novel strategy aimed at developing affordable building wall insulation material with enhanced safety features.

7.
Nanoscale ; 15(42): 17124-17137, 2023 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-37850476

RESUMEN

Graphene-reinforced conjugated polymer (CP) nanocomposites are attractive for flexible and electronic devices, but their mechanical properties have been less explored at a fundamental level. Here, we present a predictive multiscale modeling framework for graphene-reinforced poly(3-alkylthiophene) (P3AT) nanocomposites via atomistically informed coarse-grained molecular dynamics simulations to investigate temperature-dependent thermomechanical properties at a molecular level. Our results reveal reduced graphene dispersion with increasing graphene loading. Nanocomposites with shorter P3AT side chains, lower temperatures, and higher graphene content exhibit stronger mechanical responses, which correlates with polymer dynamics. The elastic modulus increases linearly with the graphene content, which slightly deviates from the "Halpin-Tsai" micromechanical model prediction. Local stiffness analysis shows that graphene possesses the highest stiffness, followed by the P3AT backbone and side chains. Deformation-induced stronger chain alignment of the P3AT backbone compared to graphene may further promote conductive behavior. Our findings provide insights into the dynamical heterogeneity of nanocomposites, paving the way for understanding and predicting their thermomechanical properties.

8.
Materials (Basel) ; 16(11)2023 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-37297308

RESUMEN

Polypeptoids are a family of synthetic peptidomimetic polymers featuring N-substituted polyglycine backbones with large chemical and structural diversity. Their synthetic accessibility, tunable property/functionality, and biological relevance make polypeptoids a promising platform for molecular biomimicry and various biotechnological applications. To gain insight into the relationship between the chemical structure, self-assembly behavior, and physicochemical properties of polypeptoids, many efforts have been made using thermal analysis, microscopy, scattering, and spectroscopic techniques. In this review, we summarize recent experimental investigations that have focused on the hierarchical self-assembly and phase behavior of polypeptoids in bulk, thin film, and solution states, highlighting the use of advanced characterization tools such as in situ microscopy and scattering techniques. These methods enable researchers to unravel multiscale structural features and assembly processes of polypeptoids over a wide range of length and time scales, thereby providing new insights into the structure-property relationship of these protein-mimetic materials.

9.
ACS Omega ; 8(20): 17689-17698, 2023 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-37251198

RESUMEN

Due to their high anion exchange and memory effect, the layered double hydroxides (LHDs) have wide applications for some areas. In this work, an efficient and green recycling route for layered double hydroxide based adsorbents is proposed specifically for application as a poly(vinyl chloride) (PVC) heat stabilizer without requiring secondary calcination. Conventional magnesium-aluminum hydrotalcite was synthesized using the hydrothermal method followed by removal of carbonate anion (CO32-) between LDH layers by calcination. The adsorption of perchlorate anion (ClO4-) by the memory effect of calcined LDHs with and without ultrasound assistance was compared. Using ultrasound assistance, the maximum adsorption capacity of the adsorbents (291.89 mg/g) was increased, and the adsorption process was fitted using the kinetic Elovich rate equation (R2 = 0.992) and Langmuir adsorption model (R2 = 0.996). This material was characterized using XRD, FT-IR, EDS, and TGA which demonstrated that ClO4- was intercalated into the hydrotalcite layer successfully. The recycled adsorbents were used to augment a commercial calcium-zinc-based PVC stabilizer package applied in a epoxidized soybean oil plasticized cast sheet which is based on an emulsion type PVC homopolymer resin. Use of perchlorate intercalated LDH augmentation yielded significant improvement to static heat resistance as indicated by the degree of discoloration with a life extension of approximately 60 min. The improved stability was corroborated by evaluation of HCl gas evolved during thermal degradation using conductivity change curves and the Congo red test.

10.
Polymers (Basel) ; 12(11)2020 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-33105806

RESUMEN

The molecular weight of self-emulsifying amphiphilic epoxy sizing emulsions has a big effect on the carbon fibres and interfacial properties of their composites. Novel amphiphilic epoxy sizing emulsions with four different molecular weights (7500, 11,000, 15,000 and 17,000) were successfully prepared by a self-emulsifying method and applied to improve interfacial bonding between carbon fibres (CFs) and an epoxy resin (EP). The effect of molecular weight on the quality of emulsions, the sized CFs and the interfacial properties of the CF/EP composite system were studied. The results reveal that these novel sizing emulsions exhibited strong emulsifying ability and high processability. The most favourable wettability and adequate CF surface free energy were obtained by the emulsion with a molecular weight of 7500. Compared with unsized CFs, the monofilament fibre tensile performance was remarkably improved when increasing the shape parameter from 5.08 to 7.20. The interfacial sheer strength (IFSS) of the CF/EP composite was greatly increased by 96% with the emulsion of 7500. The enhanced interfacial adhesion benefits were attributed mainly from the enhanced charge interaction between CFs and the sizing layer as well as the compatibility and the mechanical interlock between the sizing layer and the epoxy matrix.

11.
Macromolecules ; 53(17): 7601-7612, 2020 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-32952217

RESUMEN

We investigated the effect of cyclic chain topology on the molecular ordering and thermal stability of comb-shaped polypeptoid thin films on silicon (Si) substrates. Cyclic and linear poly(N-decylglycine) (PNDG) bearing long n-decyl side chains were synthesized by ring-opening polymerization of N-decylglycine-derived N-carboxyanhydrides. When the spin-coated thin films were subjected to thermal annealing at temperatures above the melting temperature (T > T m), the cyclic PNDG films exhibited significantly enhanced stability against melt-induced dewetting than the linear counterparts (l-PNDG). When recrystallized at temperatures below the crystallization temperature (T < T c), the homogeneous c-PNDG films exhibit enhanced crystalline ordering relative to the macroscopically dewetted l-PNDG films. Both cyclic and linear PNDG molecules adopt cis-amide conformations in the crystalline film, which transition into trans-amide conformations upon melting. A top-down solvent leaching treatment of both l/c-PNDG films revealed the formation of an irreversibly physisorbed monolayer with similar thickness (ca. 3 nm) on the Si substrate. The physisorbed monolayers are more disordered relative to the respective thicker crystalline films for both cyclic and linear PNDGs. Upon heating above T m, the adsorbed c-PNDG chains adopt trans-amide backbone conformation identical with the free c-PNDG molecules in the molten film. By contrast, the backbone conformations of l-PNDG chains in the adsorbed layers are notably different from those of the free chains in the molten film. We postulate that the conformational disparity between the chains in the physically adsorbed layers versus the free chains in the molten film is an important factor to account for the difference in the thermal stability of PNDG thin films. These findings highlight the use of cyclic chain topology to suppress the melt-induced dewetting in polymer thin films.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...