Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Bone ; 167: 116611, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36395960

RESUMEN

Zebrafish (Danio rerio) are aquatic vertebrates with significant homology to their terrestrial counterparts. While zebrafish have a centuries-long track record in developmental and regenerative biology, their utility has grown exponentially with the onset of modern genetics. This is exemplified in studies focused on skeletal development and repair. Herein, the numerous contributions of zebrafish to our understanding of the basic science of cartilage, bone, tendon/ligament, and other skeletal tissues are described, with a particular focus on applications to development and regeneration. We summarize the genetic strengths that have made the zebrafish a powerful model to understand skeletal biology. We also highlight the large body of existing tools and techniques available to understand skeletal development and repair in the zebrafish and introduce emerging methods that will aid in novel discoveries in skeletal biology. Finally, we review the unique contributions of zebrafish to our understanding of regeneration and highlight diverse routes of repair in different contexts of injury. We conclude that zebrafish will continue to fill a niche of increasing breadth and depth in the study of basic cellular mechanisms of skeletal biology.


Asunto(s)
Tendones , Pez Cebra , Animales , Pez Cebra/genética , Huesos , Cartílago
2.
Curr Biol ; 30(17): 3277-3292.e5, 2020 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-32649909

RESUMEN

The musculoskeletal system is a striking example of how cell identity and position is coordinated across multiple tissues to ensure function. However, it is unclear upon tissue loss, such as complete loss of cells of a central musculoskeletal connecting tendon, whether neighboring tissues harbor progenitors capable of mediating regeneration. Here, using a zebrafish model, we genetically ablate all embryonic tendon cells and find complete regeneration of tendon structure and pattern. We identify two regenerative progenitor populations, sox10+ perichondrial cells surrounding cartilage and nkx2.5+ cells surrounding muscle. Surprisingly, laser ablation of sox10+ cells, but not nkx2.5+ cells, increases tendon progenitor number in the perichondrium, suggesting a mechanism to regulate attachment location. We find BMP signaling is active in regenerating progenitor cells and is necessary and sufficient for generating new scxa+ cells. Our work shows that muscle and cartilage connective tissues harbor progenitor cells capable of fully regenerating tendons, and this process is regulated by BMP signaling.


Asunto(s)
Animales Modificados Genéticamente/crecimiento & desarrollo , Proteínas Morfogenéticas Óseas/metabolismo , Sistema Musculoesquelético/metabolismo , Regeneración , Células Madre/citología , Tendones/citología , Pez Cebra/crecimiento & desarrollo , Animales , Animales Modificados Genéticamente/genética , Animales Modificados Genéticamente/metabolismo , Proteínas Morfogenéticas Óseas/genética , Diferenciación Celular , Células Madre/metabolismo , Pez Cebra/genética , Pez Cebra/metabolismo
3.
Development ; 147(12)2020 06 24.
Artículo en Inglés | MEDLINE | ID: mdl-32467241

RESUMEN

Tendons and ligaments are crucial components of the musculoskeletal system, yet the pathways specifying these fates remain poorly defined. Through a screen of known bioactive chemicals in zebrafish, we identified a new pathway regulating tendon cell induction. We established that statin, through inhibition of the mevalonate pathway, causes an expansion of the tendon progenitor population. Co-expression and live imaging studies indicate that the expansion does not involve an increase in cell proliferation, but rather results from re-specification of cells from the neural crest-derived sox9a+/sox10+ skeletal lineage. The effect on tendon cell expansion is specific to the geranylgeranylation branch of the mevalonate pathway and is mediated by inhibition of Rac activity. This work establishes a novel role for the mevalonate pathway and Rac activity in regulating specification of the tendon lineage.


Asunto(s)
Ácido Mevalónico/metabolismo , Tendones/metabolismo , Transferasas Alquil y Aril/antagonistas & inhibidores , Transferasas Alquil y Aril/genética , Transferasas Alquil y Aril/metabolismo , Animales , Animales Modificados Genéticamente/metabolismo , Atorvastatina/farmacología , Diferenciación Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Farnesiltransferasa/antagonistas & inhibidores , Farnesiltransferasa/genética , Farnesiltransferasa/metabolismo , Morfolinos/metabolismo , Cresta Neural/metabolismo , Factor de Transcripción SOX9/genética , Factor de Transcripción SOX9/metabolismo , Factores de Transcripción SOXE/genética , Factores de Transcripción SOXE/metabolismo , Transducción de Señal , Células Madre/citología , Células Madre/metabolismo , Tendones/citología , Tendones/patología , Pez Cebra/metabolismo , Proteínas de Pez Cebra/antagonistas & inhibidores , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo , Proteínas de Unión al GTP rac/antagonistas & inhibidores , Proteínas de Unión al GTP rac/metabolismo
4.
J Biol Chem ; 289(17): 11971-11985, 2014 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-24627485

RESUMEN

Sec13 is a dual function protein, being a core component of both the COPII coat, which mediates protein trafficking from the endoplasmic reticulum to the Golgi apparatus, and the nuclear pore complex (NPC), which facilitates nucleo-cytoplasmic traffic. Here, we present a genetic model to differentiate the roles of these two functions of Sec13 in vivo. We report that sec13(sq198) mutant embryos develop small eyes that exhibit disrupted retinal lamination and that the mutant retina contains an excessive number of apoptotic cells. Surprisingly, we found that loss of COPII function by oligonucleotide-mediated gene knockdown of sec31a and sec31b or brefeldin A treatment did not disrupt retinal lamination, although it did result in digestive organ defects similar to those seen in sec13(sq198), suggesting that the digestive organ defects observed in sec13(sq198) are due to loss of COPII function, whereas the retinal lamination defects are due to loss of the NPC function. We showed that the retinal cells of sec13(sq198) failed to form proper nuclear pores, leading to a nuclear accumulation of total mRNA and abnormal activation of the p53-dependent apoptosis pathway, causing the retinal defect in sec13(sq198). Furthermore, we found that a mutant lacking Nup107, a key NPC-specific component, phenocopied the retinal lamination phenotype as observed in sec13(sq198). Our results demonstrate a requirement for the nuclear pore function of Sec13 in development of the retina and provide the first genetic evidence to differentiate the contributions of the NPC and the COPII functions of Sec13 during organogenesis.


Asunto(s)
Poro Nuclear/fisiología , Retina/embriología , Proteínas de Pez Cebra/fisiología , Animales , Secuencia de Bases , Cartilla de ADN , Hibridación in Situ , Microscopía Electrónica de Transmisión , ARN Mensajero/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Pez Cebra , Proteínas de Pez Cebra/genética
5.
Dev Biol ; 367(2): 197-207, 2012 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-22609279

RESUMEN

The Sec13-Sec31 heterotetramer serves as the outer coat in the COPII complex, which mediates protein trafficking from the endoplasmic reticulum (ER) to the Golgi apparatus. Although it has been studied in depth in yeast and cultured cells, the role of COPII in organogenesis in a multicellular organism has not. We report here that a zebrafish sec13(sq198) mutant, which exhibits a phenotype of hypoplastic digestive organs, has a mutation in the sec13 gene. The mutant gene encodes a carboxyl-terminus-truncated Sec13 that loses its affinity to Sec31a, which leads to disintegration of the ER structure in various differentiated cells in sec13(sq198), including chondrocytes, intestinal epithelial cells and hepatocytes. Disruption of the ER structure activates an unfolded protein response that eventually causes the cells to undergo cell-cycle arrest and cell apoptosis, which arrest the growth of developing digestive organs in the mutant. Our data provide the first direct genetic evidence that COPII function is essential for the organogenesis of the digestive system.


Asunto(s)
Vesículas Cubiertas por Proteínas de Revestimiento/metabolismo , Sistema Digestivo/embriología , Sistema Digestivo/metabolismo , Proteínas de Pez Cebra/metabolismo , Pez Cebra/embriología , Pez Cebra/metabolismo , Secuencia de Aminoácidos , Animales , Apoptosis , Secuencia de Bases , Vesículas Cubiertas por Proteínas de Revestimiento/genética , Puntos de Control del Ciclo Celular , Diferenciación Celular , Condrocitos/citología , Condrocitos/metabolismo , Retículo Endoplásmico/metabolismo , Regulación del Desarrollo de la Expresión Génica , Técnicas de Silenciamiento del Gen , Hepatocitos/citología , Hepatocitos/metabolismo , Mucosa Intestinal/citología , Mucosa Intestinal/embriología , Mucosa Intestinal/metabolismo , Microscopía Electrónica de Transmisión , Datos de Secuencia Molecular , Morfolinos/genética , Mutación , Organogénesis , Empalme del ARN/genética , Respuesta de Proteína Desplegada , Pez Cebra/genética , Proteínas de Pez Cebra/antagonistas & inhibidores , Proteínas de Pez Cebra/genética
6.
Sci China Life Sci ; 53(4): 455-61, 2010 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-20596911

RESUMEN

Three germ cell layers, the ectoderm, mesoderm and endoderm, are established during the gastrulation stage. All cell types in different organs and tissues are derived from these 3 germ cell layers at later stages. For example, skin epithelial cells and neuronal cells are derived from the ectoderm, while endothelial cells and muscle cells from the mesoderm and lung, and intestine epithelial cells from the endoderm. While in a normal situation different germ cells are destined to specific cell fates in different organs and tissues, each type of germ cells or its derivatives also produce extracellular signaling molecules to direct and facilitate the specification and differentiation of other germ cells during organogenesis. Liver is derived from the endoderm, but completion of liver organogenesis is regulated at different levels. While the pan-endoderm factors (e.g. FoxA and Gata families) and liver specific factors (e.g. Prox1 and Hhex) are essential intrinsic factors for endoderm cells to be differentiated into hepatoblasts, the role of signals produced by neighboring mesoderm cells for liver organogenesis is equally important. This review summarizes recent progress in studying the role of Bone morphogenetic proteins (Bmp), Fibroblast growth factors (Fgf), retinoic acid (RA) and Wingless and Int (Wnt), the 4 types of signaling molecules produced by the mesoderm cells, in liver organogenesis in zebrafish.


Asunto(s)
Hígado/metabolismo , Mesodermo/metabolismo , Pez Cebra/metabolismo , Animales , Proteínas Morfogenéticas Óseas/genética , Proteínas Morfogenéticas Óseas/metabolismo , Diferenciación Celular/genética , Endodermo/metabolismo , Endodermo/fisiología , Factores de Crecimiento de Fibroblastos/genética , Factores de Crecimiento de Fibroblastos/metabolismo , Células Germinativas/metabolismo , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Hígado/embriología , Transducción de Señal/genética , Pez Cebra/embriología , Pez Cebra/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA