Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 14(1): 8238, 2023 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-38086830

RESUMEN

The breeding of crops with improved nitrogen use efficiency (NUE) is crucial for sustainable agriculture, but the involvement of epigenetic modifications remains unexplored. Here, we analyze the chromatin landscapes of two wheat cultivars (KN9204 and J411) that differ in NUE under varied nitrogen conditions. The expression of nitrogen metabolism genes is closely linked to variation in histone modification instead of differences in DNA sequence. Epigenetic modifications exhibit clear cultivar-specificity, which likely contributes to distinct agronomic traits. Additionally, low nitrogen (LN) induces H3K27ac and H3K27me3 to significantly enhance root growth in KN9204, while remarkably inducing NRT2 in J411. Evidence from histone deacetylase inhibitor treatment and transgenic plants with loss function of H3K27me3 methyltransferase shows that changes in epigenetic modifications could alter the strategy preference for root development or nitrogen uptake in response to LN. Here, we show the importance of epigenetic regulation in mediating cultivar-specific adaptation to LN in wheat.


Asunto(s)
Nitrógeno , Triticum , Triticum/metabolismo , Nitrógeno/metabolismo , Epigénesis Genética , Histonas/genética , Histonas/metabolismo , Fitomejoramiento
2.
Front Plant Sci ; 13: 1062575, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36457528

RESUMEN

Roots are the major organs for water and nutrient acquisition and substantially affect plant growth, development and reproduction. Improvements to root system architecture are highly important for the increased yield potential of bread wheat. QMrl-7B, a major stable quantitative trait locus (QTL) that controls maximum root length (MRL), essentially contributes to an improved root system in wheat. To further analyze the biological functions of QMrl-7B in root development, two sets of Triticum aestivum near-isogenic lines (NILs), one with superior QMrl-7B alleles from cultivar Kenong 9204 (KN9204) named NILKN9204 and another with inferior QMrl-7B alleles from cultivar Jing 411 (J411) named NILJ411, were subjected to transcriptomic analysis. Among all the mapped genes analyzed, 4871 genes were identified as being differentially expressed between the pairwise NILs under different nitrogen (N) conditions, with 3543 genes expressed under normal-nitrogen (NN) condition and 2689 genes expressed under low-nitrogen (LN) condition. These genes encode proteins that mainly include N O 3 - transporters, phytohormone signaling components and transcription factors (TFs), indicating the presence of a complex regulatory network involved in root determination. In addition, among the 13524 LN-induced differentially expressed genes (DEGs) detected in this study, 4308 and 2463 were specifically expressed in the NILKN9204 and NILJ411, respectively. These DEGs reflect different responses of the two sets of NILs to varying N supplies, which likely involve LN-induced root growth. These results explain the better-developed root system and increased root vitality conferred by the superior alleles of QMrl-7B and provide a deeper understanding of the genetic underpinnings of root traits, pointing to a valuable locus suitable for future breeding efforts for sustainable agriculture.

3.
Proc Natl Acad Sci U S A ; 119(45): e2206846119, 2022 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-36322735

RESUMEN

Heat stress limits plant growth, development, and crop yield, but how plant cells precisely sense and transduce heat stress signals remains elusive. Here, we identified a conserved heat stress response mechanism to elucidate how heat stress signal is transmitted from the cytoplasm into the nucleus for epigenetic modifiers. We demonstrate that HISTONE DEACETYLASE 9 (HDA9) transduces heat signals from the cytoplasm to the nucleus to play a positive regulatory role in heat responses in Arabidopsis. Heat specifically induces HDA9 accumulation in the nucleus. Under heat stress, the phosphatase PP2AB'ß directly interacts with and dephosphorylates HDA9 to protect HDA9 from 26S proteasome-mediated degradation, leading to the translocation of nonphosphorylated HDA9 to the nucleus. This heat-induced enrichment of HDA9 in the nucleus depends on the nucleoporin HOS1. In the nucleus, HDA9 binds and deacetylates the target genes related to signaling transduction and plant development to repress gene expression in a transcription factor YIN YANG 1-dependent and -independent manner, resulting in rebalance of plant development and heat response. Therefore, we uncover an HDA9-mediated positive regulatory module in the heat shock signal transduction pathway. More important, this cytoplasm-to-nucleus translocation of HDA9 in response to heat stress is conserved in wheat and rice, which confers the mechanism significant implication potential for crop breeding to cope with global climate warming.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas , Células Vegetales/metabolismo , Fitomejoramiento , Arabidopsis/metabolismo , Histona Desacetilasas/genética , Histona Desacetilasas/metabolismo
5.
Plant Physiol ; 190(4): 2335-2349, 2022 11 28.
Artículo en Inglés | MEDLINE | ID: mdl-35972411

RESUMEN

In cell-cell communication, noncell-autonomous transcription factors play vital roles in controlling plant stem cell fate. We previously reported that AUXIN RESPONSE FACTOR3 (ARF3), a member of the ARF family with critical roles in floral meristem maintenance and determinacy, has a distinct accumulation pattern that differs from the expression domain of its encoding gene in the shoot apical meristem (SAM). However, the biological meaning of this difference is obscure. Here, we demonstrate that ARF3 expression in Arabidopsis (Arabidopsis thaliana) is mainly activated at the periphery of the SAM by auxin where ARF3 cell autonomously regulates the expression of meristem-organ boundary-specific genes, such as CUP-SHAPED COTYLEDON1-3 (CUC1-3), BLADE ON PETIOLE1-2 (BOP1-2), and TARGETS UNDER ETTIN CONTROL3 (TEC3) to regulate the arrangement of organs in regular pattern, a phenomenon referred to as phyllotaxis. We also show that ARF3 is translocated into the organizing center where it represses cytokinin activity and WUSCHEL expression to regulate meristem activity noncell-autonomously. Therefore, ARF3 acts as a molecular link that mediates the interaction of auxin and cytokinin signaling in the SAM while coordinating the balance between meristem maintenance and organogenesis. Our findings reveal an ARF3-mediated coordination mechanism through cell-cell communication in dynamic SAM maintenance.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Meristema/metabolismo , Ácidos Indolacéticos/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Citocininas/metabolismo , Proliferación Celular , Regulación de la Expresión Génica de las Plantas
6.
Nat Plants ; 8(7): 792-801, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35817819

RESUMEN

Plant development is highly dependent on energy levels. TARGET OF RAPAMYCIN (TOR) activates the proximal root meristem to promote root development in response to photosynthesis-derived sugars during photomorphogenesis in Arabidopsis thaliana. However, the mechanisms of how root tip homeostasis is maintained to ensure proper root cap structure and gravitropism are unknown. PLETHORA (PLT) transcription factors are pivotal for the root apical meristem (RAM) identity by forming gradients, but how PLT gradients are established and maintained, and their roles in COL development are not well known. We demonstrate that endogenous sucrose induces TOPOISOMERASE1α (TOP1α) expression during the skotomorphogenesis-to-photomorphogenesis transition. TOP1α fine-tunes TOR expression in the root tip columella. TOR maintains columella stem cell identity correlating with reduced quiescent centre cell division in a WUSCHEL RELATED HOMEOBOX5-independent manner. Meanwhile, TOR promotes PLT2 expression and phosphorylates and stabilizes PLT2 to maintain its gradient consistent with TOR expression pattern. PLT2 controls cell division and amyloplast formation to regulate columella development and gravitropism. This elaborate mechanism helps maintain root tip homeostasis and gravitropism in response to energy changes during root development.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , ADN-Topoisomerasas de Tipo I/metabolismo , Regulación de la Expresión Génica de las Plantas , Homeostasis , Meristema/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Raíces de Plantas/metabolismo , Sirolimus/metabolismo , Azúcares/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...