Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Environ Geochem Health ; 46(8): 275, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38958819

RESUMEN

Soil organic matter plays an important role in cadmium adsorption and immobilization. Since different organic matter components affect cadmium adsorption processes differently, selecting the right organic substrate and knowing how to apply it could improve cadmium remediation. This study compares the effects of two contrasting organic molecules; chitosan and citric acid, on cadmium adsorption and speciation in acidic Ultisol. The adsorption of chitosan to Ultisol significantly increased the soil positive charge while adsorption of citric acid increased the soil negative charge. At pH 5.0, the maximum amount of cadmium adsorbed in excess chitosan was 341% greater than that in excess citric acid. About 73-89% and 60-62% of adsorbed cadmium were bound to Fe/Mn oxides and organic matter/sulfide at pH 4.0 while this fraction was 77-100% and 57-58% for citric acid and chitosan at pH 5.0, respectively. This decrease in the complexing ability of chitosan was related to the destabilizing effect of high pH on chitosan's structure. Also, the sequence through which chitosan, citric acid, and cadmium were added into the adsorption system influenced the adsorption profile and this was different along a pH gradient. Specifically, adding chitosan and cadmium together increased adsorption compared to when chitosan was pre-adsorbed within pH 3.0-6.5. However, for citric acid, the addition sequence had no significant effect on cadmium adsorption between pH 3.0-4.0 compared to pH 6.5 and 7.5, with excess citric acid generally inhibiting adsorption. Given that the action of citric acid is short-lived in soil, chitosan could be a good soil amendment material for immobilizing cadmium.


Asunto(s)
Cadmio , Quitosano , Ácido Cítrico , Contaminantes del Suelo , Suelo , Quitosano/química , Ácido Cítrico/química , Cadmio/química , Adsorción , Contaminantes del Suelo/química , Suelo/química , Concentración de Iones de Hidrógeno , Restauración y Remediación Ambiental/métodos
2.
Ecotoxicol Environ Saf ; 281: 116609, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38905937

RESUMEN

Copper (Cu) is a necessary mineral nutrient for plant growth and development and is involved in several morphological, physiological, and biochemical processes; however, high concentrations of Cu can negatively impact these processes. The role of stomata in responding to various biotic and abiotic stimuli has not been studied in Bruguiera gymnorhiza, particularly in terms of their coordinated interactions at the molecular, physiological, and biochemical levels. Moreover, numerous plants employ strategies such as the presence of thick waxy cuticles on their leaf epidermis and the closing of stomata to reduce water loss. Thus, this study investigates the accumulation of Cu in B. gymnorhiza and its effect on leaf morphology and the molecular response under different Cu treatments (0, 200, and 400 mg L⁻¹, Cu0, Cu200, and Cu400, respectively) during a two years stress period. The results show that Cu stress affected accumulation and transport, increased the activities of peroxidase and ascorbate peroxidase, concentrations of soluble sugar, proline, and H2O2, and decreased the activity of catalase and content of malondialdehyde. Also, Cu-induced stress decreased the uptake of phosphorus and nitrogen and inhibited plant photosynthesis, which consequently led to reduced plant growth. Scanning electron microscopy combined with gas chromatography-mass spectrometry showed that B. gymnorhiza leaves had higher wax crystals and compositions under increased Cu stress, which forced the leaf's stomata to be closed. Also, the contents of alkanes, alcohols, primary alcohol levels (C26:0, C28:0, C30:0, and C32:0), n-Alkanes (C29 and C30), and other wax loads were significantly higher, while fatty acid (C12, C16, and C18) was lower in Cu200 and Cu400 compared to Cu0. Furthermore, the transcriptomic analyses revealed 1240 (771 up- and 469 downregulated), 1000 (723 up- and 277 down-regulated), and 1476 (808 up- and 668 downregulated) differentially expressed genes in Cu0 vs Cu200, Cu0 vs Cu400, and Cu200 vs Cu400, respectively. RNA-seq analyses showed that Cu mainly affected eight pathways, including photosynthesis, cutin, suberin, and wax biosynthesis. This study provides a reference for understanding mangrove response to heavy metal stress and developing novel management practices.


Asunto(s)
Cobre , Hojas de la Planta , Estomas de Plantas , Ceras , Cobre/toxicidad , Hojas de la Planta/efectos de los fármacos , Estomas de Plantas/efectos de los fármacos , Estomas de Plantas/fisiología , Estrés Fisiológico/efectos de los fármacos , Fotosíntesis/efectos de los fármacos , Onagraceae/efectos de los fármacos , Onagraceae/fisiología , Transcriptoma/efectos de los fármacos , Contaminantes del Suelo/toxicidad , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos
3.
Sci Total Environ ; 926: 171577, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38521268

RESUMEN

Pollution caused by polycyclic aromatic hydrocarbons (PAHs) is a significant concern. This concern has become more problematic given the rapid modification of PAHs in the environment during co-contamination to form substituted PAHs. This review aims to integrate bibliometric analysis with a rigorous study of mechanistic insights, resulting in a more comprehensive knowledge of evolving research trends on PAH remediation. The results show that research in this field has progressed over the years and peaked in 2022, potentially due to the redirection of resources toward emerging pollutants, hinting at the dynamic nature of environmental research priorities. During this year, 158,147 documents were published, representing 7 % of the total publications in the field between 2000 and 2023. The different remediation methods used for PAH remediation were identified and compared. Bioremediation, having >90 % removal efficiency, has been revealed to be the best technique because it is cost-effective and easy to operate at large scale in situ and ex-situ. The current challenges in PAH remediation have been detailed and discussed. Implementing innovative and sustainable technologies that target pollutant removal and valuable compound recovery is necessary to build a more robust future for water management.

4.
J Hazard Mater ; 466: 133601, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38309159

RESUMEN

Mangroves are of important economic and environmental value and research suggests that their carbon sequestration and climate change mitigation potential is significantly larger than other forests. However, increasing salinity and heavy metal pollution significantly affect mangrove ecosystem function and productivity. This study investigates the tolerance mechanisms of rhizobacteria in the rhizosphere of Avicennia marina under salinity and copper (Cu) stress during a 4-y stress period. The results exhibited significant differences in antioxidant levels, transcripts, and secondary metabolites. Under salt stress, the differentially expressed metabolites consisted of 30% organic acids, 26.78% nucleotides, 16.67% organic heterocyclic compounds, and 10% organic oxides as opposed to 27.27% organic acids, 24.24% nucleotides, 15.15% organic heterocyclic compounds, and 12.12% phenyl propane and polyketides under Cu stress. This resulted in differential regulation of metabolic pathways, with phenylpropanoid biosynthesis being unique to Cu stress and alanine/aspartate/glutamate metabolism and α-linolenic acid metabolism being unique to salt stress. The regulation of metabolic pathways enhanced antioxidant defenses, nutrient recycling, accumulation of osmoprotectants, stability of plasma membrane, and chelation of Cu, thereby improving the stress tolerance of rhizobacteria and A. marina. Even though the abundance and community structure of rhizobacteria were significantly changed, all the samples were dominated by Proteobacteria, Chloroflexi, Actinobacteriota, and Firmicutes. Since the response mechanisms were unbalanced between treatments, this led to differential growth trends for A. marina. Our study provides valuable inside on variations in diversity and composition of bacterial community structure from mangrove rhizosphere subjected to long-term salt and Cu stress. It also clarifies rhizobacterial adaptive mechanisms to these stresses and how they are important for mitigating abiotic stress and promoting plant growth. Therefore, this study can serve as a reference for future research aimed at developing long-term management practices for mangrove forests.


Asunto(s)
Avicennia , Compuestos Heterocíclicos , Cobre/toxicidad , Cobre/metabolismo , Ecosistema , Avicennia/metabolismo , Suelo , Antioxidantes/metabolismo , Multiómica , Estrés Salino , Nucleótidos/metabolismo , Compuestos Heterocíclicos/metabolismo
5.
J Environ Manage ; 354: 120312, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38340667

RESUMEN

The increased use of antibiotics by humans for various purposes has left the environment polluted. Antibiotic pollution remediation is challenging because antibiotics exist in trace amounts and only highly sensitive detection techniques could be used to quantify them. Nevertheless, their trace quantity is not a hindrance to their transfer along the food chain, causing sensitization and the development of antibiotic resistance. Despite an increase in the literature on antibiotic pollution and the development and transfer of antibiotic-resistant genes (ARGs), little attention has been given to the behavior of antibiotics at the soil-solution interface and how this affects antibiotic adsorption-desorption interactions and subsequent uptake and transformation by plants. Thus, this review critically examines the interactions and possible degradation mechanisms of antibiotics in soil and the link between antibiotic soil-solution chemistry and uptake by plants. Also, different factors influencing antibiotic mobility in soil and the transfer of ARGs from one organism to another were considered. The mechanistic and critical analyses revealed that: (a) the charge characteristics of antibiotics at the soil-root interface determine whether they are adsorbed to soil or taken up by plants; (b) antibiotics that avoid soil colloids and reach soil pore water can be absorbed by plant roots, but their translocation to the stem and leaves depends on the ionic state of the molecule; (c) few studies have explored how plants adapt to antibiotic pollution and the transformation of antibiotics in plants; and (d) the persistence of antibiotics in cropland soils can be influenced by the content of soil organic matter, coexisting ions, and fertilization practices. Future research should focus on the soil/solution-antibiotic-plant interactions to reveal detailed mechanisms of antibiotic transformation by plants and whether plant-transformed antibiotics could be of environmental risk.


Asunto(s)
Antibacterianos , Contaminantes del Suelo , Humanos , Antibacterianos/metabolismo , Suelo , Contaminantes del Suelo/química , Plantas/metabolismo , Contaminación Ambiental/análisis
6.
Chemosphere ; 349: 140896, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38070606

RESUMEN

Chitosan is a biodegradable polymer with a vast range of applications. Along with its metal composites, chitosan has been applied in the remediation of polluted soils as well as a biofertilizer. However, little attention has been given to the degradation of chitosan composites in soil and how they affect soil respiration rate and other physicochemical parameters. In this study, the degradation of chitosan and its composites with gibbsite and hematite in an acidic Ultisol and the effect on urea (200 mg N kg-1) transformation were investigated in a 70-d incubation experiment. The results showed that the change trends of soil pH, N forms, and CO2 emissions were similar for chitosan and its composites when applied at rates <5 g C kg-1. At a rate of 5 g C kg-1, the C and N mineralization trends suggested that the chitosan-gibbsite composite was more stable in soil and this stability was owed to the formation of a new chemical bond (CH-N-Al-Gibb) as observed in the Fourier-transform infrared spectrum at 1644 cm-1. The mineralization of the added materials significantly increased soil pH and decreased soil exchangeable acidity (P < 0.01). This played an important role in decreasing the amount of H+ produced during urea transformation in the soil. The soil's initial pH was an important factor influencing C and N mineralization trends. For instance, increasing the initial soil pH significantly increased the nitrification rate and chitosan decomposition trend (P < 0.01) and thus, the contribution of chitosan and its composites to increase soil pH and inhibit soil acidification during urea transformation was significantly decreased (P < 0.01). These findings suggest that to achieve long-term effects of chitosan in soils, applying it as a chitosan-gibbsite complex is a better option.


Asunto(s)
Quitosano , Suelo , Suelo/química , Carbono/química , Nitrógeno/análisis , Urea , Concentración de Iones de Hidrógeno
7.
Int J Mol Sci ; 24(24)2023 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-38139139

RESUMEN

Copper-containing amine oxidases (CuAOs) are known to have significant involvement in the process of polyamine catabolism, as well as serving crucial functions in plant development and response to abiotic stress. A genome-wide investigation of the CuAO protein family was previously carried out in sweet orange (Citrus sinensis) and sweet cherry (Prunus avium L.). Six CuAO (KoCuAO1-KoCuAO6) genes were discovered for the first time in the Kandelia obovata (Ko) genome through a genome-wide analysis conducted to better understand the key roles of the CuAO gene family in Kandelia obovata. This study encompassed an investigation into various aspects of gene analysis, including gene characterization and identification, subcellular localization, chromosomal distributions, phylogenetic tree analysis, gene structure analysis, motif analysis, duplication analysis, cis-regulatory element identification, domain and 3D structural variation analysis, as well as expression profiling in leaves under five different treatments of copper (CuCl2). Phylogenetic analysis suggests that these KoCuAOs, like sweet cherry, may be subdivided into three subgroups. Examining the chromosomal location revealed an unequal distribution of the KoCuAO genes across four out of the 18 chromosomes in Kandelia obovata. Six KoCuAO genes have coding regions with 106 and 159 amino acids and exons with 4 and 12 amino acids. Additionally, we discovered that the 2.5 kb upstream promoter region of the KoCuAOs predicted many cis elements linked to phytohormones and stress responses. According to the expression investigations, CuCl2 treatments caused up- and downregulation of all six genes. In conclusion, our work provides a comprehensive overview of the expression pattern and functional variety of the Kandelia obovata CuAO gene family, which will facilitate future functional characterization of each KoCuAO gene.


Asunto(s)
Amina Oxidasa (conteniendo Cobre) , Rhizophoraceae , Rhizophoraceae/genética , Amina Oxidasa (conteniendo Cobre)/metabolismo , Filogenia , Cobre/metabolismo , Aminoácidos/metabolismo , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
8.
Int J Mol Sci ; 24(21)2023 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-37958561

RESUMEN

The copper transporter (COPT/Ctr) gene family plays a critical part in maintaining the balance of the metal, and many diverse species depend on COPT to move copper (Cu) across the cell membrane. In Arabidopsis thaliana, Oryza sativa, Medicago sativa, Zea mays, Populus trichocarpa, Vitis vinifera, and Solanum lycopersicum, a genome-wide study of the COPT protein family was performed. To understand the major roles of the COPT gene family in Kandelia obovata (Ko), a genome-wide study identified four COPT genes in the Kandelia obovata genome for the first time. The domain and 3D structural variation, phylogenetic tree, chromosomal distributions, gene structure, motif analysis, subcellular localization, cis-regulatory elements, synteny and duplication analysis, and expression profiles in leaves and Cu were all investigated in this research. Structural and sequence investigations show that most KoCOPTs have three transmembrane domains (TMDs). According to phylogenetic research, these KoCOPTs might be divided into two subgroups, just like Populus trichocarpa. KoCOPT gene segmental duplications and positive selection pressure were discovered by universal analysis. According to gene structure and motif analysis, most KoCOPT genes showed consistent exon-intron and motif organization within the same group. In addition, we found five hormones and four stress- and seven light-responsive cis-elements in the KoCOPTs promoters. The expression studies revealed that all four genes changed their expression levels in response to copper (CuCl2) treatments. In summary, our study offers a thorough overview of the Kandelia obovata COPT gene family's expression pattern and functional diversity, making it easier to characterize each KoCOPT gene's function in the future.


Asunto(s)
Genes de Plantas , Rhizophoraceae , Cobre/metabolismo , Proteínas Transportadoras de Cobre/metabolismo , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Estudio de Asociación del Genoma Completo , Familia de Multigenes , Filogenia , Proteínas de Plantas/metabolismo , Rhizophoraceae/genética
9.
Sci Total Environ ; 881: 163469, 2023 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-37061067

RESUMEN

Antibiotic pollution is an ever-growing concern that affects the growth of plants and the well-being of animals and humans. Research on antibiotics remediation from aqueous media has grown over the years and previous reviews have highlighted recent advances in antibiotics remediation technologies, perspectives on antibiotics ecotoxicity, and the development of antibiotic-resistant genes. Nevertheless, the relationship between antibiotics solution chemistry, remediation technology, and the interactions between antibiotics and adsorbents at the molecular level is still elusive. Thus, this review summarizes recent literature on antibiotics remediation from aqueous media and the adsorption perspective. The review discusses the principles, mechanisms, and solution chemistry of antibiotics and how they affect remediation and the type of adsorbents used for antibiotic adsorption processes. The literature analysis revealed that: (i) Although antibiotics extraction and detection techniques have evolved from single-substrate-oriented to multi-substrates-oriented detection technologies, antibiotics pollution remains a great danger to the environment due to its trace level; (ii) Some of the most effective antibiotic remediation technologies are still at the laboratory scale. Thus, upscaling these technologies to field level will require funding, which brings in more constraints and doubts patterning to whether the technology will achieve the same performance as in the laboratory; and (iii) Adsorption technologies remain the most affordable for antibiotic remediation. However, the recent trends show more focus on developing high-end adsorbents which are expensive and sometimes less efficient compared to existing adsorbents. Thus, more research needs to focus on developing cheaper and less complex adsorbents from readily available raw materials. This review will be beneficial to stakeholders, researchers, and public health professionals for the efficient management of antibiotics for a refined decision.


Asunto(s)
Restauración y Remediación Ambiental , Contaminantes Químicos del Agua , Animales , Humanos , Antibacterianos/análisis , Contaminantes Químicos del Agua/análisis , Aguas Residuales , Contaminación Ambiental/análisis , Adsorción , Agua/análisis
10.
Sci Total Environ ; 874: 162464, 2023 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-36858227

RESUMEN

Biochar can inhibit soil acidification by decreasing the H+ input from nitrification and improving soil pH buffering capacity (pHBC). However, biochar is a complex material and the roles of its different components in inhibiting soil acidification induced by nitrification remain unclear. To address this knowledge gap, dissolved biochar fractions (DBC) and solid biochar particles (SBC) were separated and mixed thoroughly with an amended Ultisol. Following a urea addition, the soils were subjected to an incubation study. The results showed that both the DBC and SBC inhibited soil acidification by nitrification. The DBC inhibited soil acidification by decreasing the H+ input from nitrification, while SBC enhanced the soil pHBC. The DBC from peanut straw biochar (PBC) and rice straw biochar (RBC) decreased the H+ release by 16 % and 18 % at the end of incubation. The decrease in H+ release was attributed to the inhibition of soil nitrification and net mineralization caused by the toxicity of the phenols in DBC to soil bacteria. The abundance of ammonia-oxidizing bacteria (AOB) and total bacteria decreased by >60 % in the treatments with DBC. The opposite effects were observed in the treatments with SBC. Soil pHBC increased by 7 % and 19 % after the application of solid RBC and PBC particles, respectively. The abundance of carboxyl on the surface of SBC was mainly responsible for the increase in soil pHBC. Generally, the mixed application of DBC and SBC was more effective at inhibiting soil acidification than their individual applications. The negative impacts of dissolved biochar components on soil microorganisms need to be closely monitored.


Asunto(s)
Nitrificación , Suelo , Suelo/química , Bacterias , Carbón Orgánico/química , Arachis , Concentración de Iones de Hidrógeno , Microbiología del Suelo
11.
J Sci Food Agric ; 103(7): 3531-3539, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36788119

RESUMEN

BACKGROUND: Manganese (Mn) is an essential micronutrient for plants, whereas excess Mn(II) in soils leads to its toxicity to crops. Mn(II) is adsorbed onto plant roots from soil solution and then absorbed by plants. Root charge characteristics should affect Mn(II) toxicity to crops and Mn(II) uptake by the roots of the crops. However, the differences in the effects of root surface charge on the uptake of Mn(II) among various crop species are not well understood. RESULTS: The roots of nine legumes and six non-legume poaceae were obtained by hydroponics and the streaming potential method and spectroscopic analysis were used to measure the zeta potentials and functional groups on the roots, respectively. The results indicate that the exchangeable Mn(II) adsorbed by plant roots was significantly positively correlated with the Mn(II) accumulated in plant shoots. Legume roots carried more negative charges and functional groups than non-legume poaceae roots, which was responsible for the larger amounts of exchangeable Mn(II) on legume roots in 2 h and the Mn(II) accumulated in their shoots in 48 h. Coexisting cations, such as Ca2+ and Mg2+ , were most effective in decreasing Mn(II) taken up by roots and accumulated in shoots than K+ and Na+ . This was because Ca2+ and Mg2+ could compete with Mn(II) for active sites on plant roots more strongly compared to K+ and Na+ . CONCLUSION: The root surface charge and functional groups are two important factors influencing Mn(II) uptake by roots and accumulation in plant shoots. © 2023 Society of Chemical Industry.


Asunto(s)
Fabaceae , Poaceae , Manganeso , Transporte Biológico , Productos Agrícolas , Verduras , Suelo , Raíces de Plantas
12.
Chemosphere ; 313: 137570, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36563731

RESUMEN

Phyllosilicate minerals are the important components in soils and an important source of activated aluminum (Al) during soil acidification. However, the mechanisms for Al activation in phyllosilicate minerals were not understood well. In this paper, the effect of phyllosilicate surface hydroxyl groups on Al activation during acidification was studied after the minerals were modified with inorganic and organic materials. After modification of kaolinite, montmorillonite, and illite with fulvic acid (FA-), iron oxide (Fe-), Fe combined with FA (Fe-FA-), and siloxane (Si-O-), the interlayer spaces were altered. For instance, when modified with Fe, Fe entered the interlayer spaces of kaolinite and montmorillonite and changed the interlayer spaces of both minerals but did not affect that of illite. Also, the other modification methods had significant effects on the interlayer space of montmorillonite but not on kaolinite and illite. It was observed that all the modification strategies inhibited Al activation during acidification by reducing the number of hydroxyl groups on the mineral surfaces and inhibiting protonation reactions between H+ and hydroxyl groups. Nevertheless, the inhibition effect varies with the type of phyllosilicate mineral. For kaolinite (Kao), the inhibition effect of the different modification methods on Al activation during acidification followed: Fe-FA-Kao > Fe-Kao > Si-O-Kao > FA-Kao. Additionally, for montmorillonite (Mon), the inhibition effect was in the order: Si-O-Mon > Fe-Mon > Fe-FA-Mon > FA-Mon, while for illite, it was: Fe-illite > Si-O-illite ≈ Fe-FA-illite > FA-illite. Thus, the hydroxyl groups on the surfaces and edges of phyllosilicate minerals play an important role in the activation of Al from the mineral structure. Also, the protonation of hydroxyl groups may be the first step during Al activation in these minerals. The results of this study can serve as a reference for the development of new technologies to inhibit soil acidification and Al activation.


Asunto(s)
Aluminio , Caolín , Caolín/química , Arcilla , Bentonita/química , Silicatos de Aluminio/química , Adsorción , Minerales/química , Suelo , Concentración de Iones de Hidrógeno
13.
Environ Pollut ; 318: 120865, 2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-36521718

RESUMEN

Coexisting of microplastics (MPs) and residual herbicides has received substantial attention due to concerns about the pollutant vector effect. Here, the widely used amide herbicides were examined for their sorption behaviors on the priority biodegradable and nondegradable MPs identified in intensive agriculture. The fitting results indicated that the interactions between napropamide (Nap)/acetochlor (Ace) and the MPs, i.e., poly (butyleneadipate-co-terephthalate) microplastic (PBATM), polyethylene microplastic (PEM), and polypropylene microplastic (PPM), may be dominated by hydrophobic absorptive partitioning on the heterogeneous surfaces. Additionally, chemisorption cannot be ignored for the sorption of Nap/Ace on the biodegradable MPs. The sorption capacities of Nap/Ace on the MPs followed the order of PBATM > PEM > PPM. The differences in sorption capacity which varied by the MP colors were not significant. The hydrophobicity of the herbicides and the MPs, the rubber regions, surface O-functional groups, benzene ring structures and large specific surface area of the biodegradable MPs played key roles in the better performance in sorbing amide herbicides. Moreover, MPs, especially biodegradable MPs, might lead to a higher vector effect for residual amide herbicides than some other common environmental media. This study may provide baseline insights into the great potential of biodegradable MPs to serve as carriers of residual amide herbicides in intensive agrosystems.


Asunto(s)
Plásticos , Contaminantes Químicos del Agua , Plásticos/química , Microplásticos/química , Amidas , Adsorción , Polipropilenos , Polietileno , Agricultura , Contaminantes Químicos del Agua/análisis
14.
Front Plant Sci ; 14: 1318383, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38239217

RESUMEN

Natural resistance-associated macrophage proteins (NRAMPs) are a class of metal transporters found in plants that exhibit diverse functions across different species. Transporter proteins facilitate the absorption, distribution, and sequestration of metallic elements within various plant tissues. Despite the extensive identification of NRAMP family genes in various species, a full analysis of these genes in tree species is still necessary. Genome-wide identification and bioinformatics analysis were performed to understand the roles of NRAMP genes in copper (CuCl2) stress in Kandelia obovata (Ko). In Arachis hypogaea L., Populus trichocarpa, Vitis vinifera, Phaseolus vulgaris L., Camellia sinensis, Spirodela polyrhiza, Glycine max L. and Solanum lycopersicum, a genome-wide study of the NRAMP gene family was performed earlier. The domain and 3D structural variation, phylogenetic tree, chromosomal distributions, gene structure, motif analysis, subcellular localization, cis-regulatory elements, synteny and duplication analysis, and expression profiles in leaves and CuCl2 were all investigated in this research. In order to comprehend the notable functions of the NRAMP gene family in Kandelia obovata, a comprehensive investigation was conducted at the genomic level. This study successfully found five NRAMP genes, encompassing one gene pair resulting from whole-genome duplication and a gene that had undergone segmental duplication. The examination of chromosomal position revealed an unequal distribution of the KoNRAMP genes across chromosomes 1, 2, 5, 7, and 18. The KoNRAMPs can be classified into three subgroups (I, II, and SLC) based on phylogeny and synteny analyses, similar to Solanum lycopersicum. Examining cis-regulatory elements in the promoters revealed five hormone-correlated responsive elements and four stress-related responsive elements. The genomic architecture and properties of 10 highly conserved motifs are similar among members of the NRAMP gene family. The conducted investigations demonstrated that the expression levels of all five genes exhibited alterations in response to different levels of CuCl2 stress. The results of this study offer crucial insights into the roles of KoNRAMPs in the response of Kandelia obovata to CuCl2 stress.

15.
Chemosphere ; 309(Pt 1): 136749, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36209864

RESUMEN

Phosphorus (P) availability in highly weathered soils is significantly influenced by the contents of iron (Fe)/aluminum (Al) oxides, clay minerals, and organic matter. With the increasing interest in biofertilizers (e.g. chitosan), it is important to understand how they affect P adsorption profiles on colloids of weathered soils rich in Fe/Al oxides. Thus, the effect of chitosan on the adsorption of P to colloids of hematite, gibbsite, Oxisol, and Ultisol was studied through electrokinetic measurements, spectroscopic analysis, and adsorption edge/isotherm profiles. The presence of chitosan significantly improved the surface positive charge and the decreasing trend of surface positive charge was slower for chitosan-treated colloids compared to the control with increasing pH. At pH 5.0, all the colloids were positively charged, with the oxides containing more positve charges than the soil colloids. At this pH value, the surface coverage capacity of P was 99.1, 61.6, 50.5, and 37.5 mmol kg⁻1 for Oxisol, Ultisol, hematite, and gibbsite, respectively. This suggests that clay minerals in soil colloids were vital in enhancing P adsorption. In the presence of chitosan, the surface coverage capacity of P was increased by 111%, 173%, 647%, and 488% for Oxisol, Ultisol, gibbsite, and hematite, respectively. Drawing inferences from spectroscopic analysis, citric acid desorption profile, and zeta potential analysis, we suggest that chitosan (CH) enhanced P adsorption by promoting the formation of (i) citric acid "undisplaceable" inner-sphere P complexes such as [Colloid-OP-O-CH] and [Colloid-OP-N-CH], (ii) citric acid "displaceable" outer-sphere P complexes such as {[Colloid-O-CH]-OP} and {[Colloid-N-CH]-OP}, and (iii) water "leachable or soluble" P complexes such as {[Colloid-CH]+PO4³â»} and {[Colloid-OP]⁻CH+}. Thus, applying chitosan as a biofertilizer (source of N) along with P in highly weathered soils could improve P availability while reducing P leaching.


Asunto(s)
Quitosano , Contaminantes del Suelo , Fosfatos/química , Contaminantes del Suelo/análisis , Arcilla , Aluminio , Suelo/química , Coloides/química , Fósforo , Minerales , Hierro , Óxidos , Ácido Cítrico , Agua
16.
Environ Pollut ; 313: 120175, 2022 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-36115484

RESUMEN

To develop more green, practical and efficient biochar amendments for acidic soils, chitosan-modified biochar (CRB) and alginate-modified biochar (ARB) were prepared, and their effects on promoting soil pH buffering capacity (pHBC) and immobilizing cadmium (Cd) in the paddy soils were investigated through indoor incubation experiments. The results of Fourier transform infrared spectroscopy and Boehm titration indicated that the introduction of chitosan and sodium alginate effectively amplified the functional groups of the biochar, and improved acid buffering capacity of the biochar. Since there was a plateau region between pH 4.5 and 5.5 in acid-base titration curve of the CRB, adding this biochar to acidic paddy soils apparently improved the pHBC and enhanced the acidification resistance of the paddy soils. The addition of ARB enhanced the reduction reactions during submerging and weakened the oxidation reactions during draining, thus retarded the decline of paddy soil pH during drainage. Furthermore, the pH of the paddy soils with ARB addition was higher at the end of draining, which reduced the activity of soil Cd. Considering the environmental sustainability of chitosan and sodium alginate and convenience of preparation method, biochars modified with these two materials provided alternatives for acidic paddy soil amelioration and heavy metal immobilization. However, the additional experiments should be conducted under field conditions to confirm practical application effects in the future.


Asunto(s)
Quitosano , Metales Pesados , Oryza , Contaminantes del Suelo , Ácidos/química , Alginatos , Antagonistas de Receptores de Angiotensina , Inhibidores de la Enzima Convertidora de Angiotensina , Cadmio/análisis , Carbón Orgánico/química , Concentración de Iones de Hidrógeno , Oryza/química , Suelo/química , Contaminantes del Suelo/análisis
17.
Chemosphere ; 301: 134674, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35461893

RESUMEN

To explore the effects of the increases in pH and pH buffering capacity (pHBC) induced by crop residue biochars on the changes in soil available Cd content, six acidic paddy soils developed from different parents were amended with seeded sunflower plate biochar (SSPBC), peanut straw biochar (PSBC) and corn straw biochar (CSBC). The pH, pHBC, and available Cd of the soils were measured after laboratory incubation. The results showed that the incorporation of crop residue biochars led to the increases in soil pH and pHBC, but a decrease in soil available Cd content. The decreasing order of available Cd content was SSPBC > PSBC > CSBC and was consistent with the changes in soil pH induced by the biochars. During submerging and draining, soil pH increased first and then declined, however the content of available Cd decreased first and then increased significantly. Soil pH in the treatments with biochars showed little change during draining, which was different from the control without the biochars added. This was attributed to the enhancing effect of the biochars on soil pHBC. Also, there was a significant negative correlation between the change in available Cd content and soil pHBC during submerging/draining alternation and suggested that higher pHBC corresponded to smaller soil available Cd content. Consequently, the amount of Cd absorbed by rice was reduced, thereby reducing the potential risk of soil Cd to humans. These results can provide useful references for the remediation of Cd-contaminated paddy soils.


Asunto(s)
Oryza , Contaminantes del Suelo , Ácidos/química , Arachis , Cadmio/análisis , Carbón Orgánico/química , Humanos , Concentración de Iones de Hidrógeno , Oryza/química , Suelo/química , Contaminantes del Suelo/análisis , Zea mays
18.
Ecotoxicol Environ Saf ; 234: 113409, 2022 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-35286955

RESUMEN

Incubation experiments were conducted to investigate the influencing factors of pH variation in different paddy soils during submerging/draining alternation and the relationship between pH buffering capacity (pHBC) and Cd speciation in ten paddy soils developed from different parent materials (including 8 acid paddy soils and 2 alkaline paddy soils). The soil pHBC and the changes in soil pH, Eh, Fe2+, Mn2+, SO42- and Cd speciation were determined. The results showed that there was a significant positive correlation between cation exchange capacity (CEC) and pHBC of these paddy soils, indicating that soil CEC is a key factor affecting the pHBC of paddy soils. The contribution of Fe(III) oxide reduction to H+ consumption is far greater than the reduction of Mn(IV)/Mn(III) oxides and SO42- during the submerging. For example, the contribution of the reduction of manganese oxides, SO42- and iron oxides to H+ consumption in the paddy soils from Anthrosol at 15 d submerging was 1.2%, 11.6% and 87.2%, respectively. This confirms that the reduction of Fe(III) oxides plays a leading role in increasing soil pH. Importantly, we noticed that during submerging, soil pH was increased and resulted in the content of available Cd in soils being reduced. This was due to the transformation of Cd to less active forms. Also, there was a significant positive correlation between the change rate of available Cd, the percentage of acid extractable Cd and pH variation. This suggests that the variation in soil pH was responsible for the transformation of Cd speciation. In addition, the change rate of available Cd and the percentage of acid extractable Cd concentration were significantly negatively correlated with soil pHBC. The soil with higher pHBC experienced less pH change, and thus the change rate of available Cd and the percentage of acid extractable Cd concentration were less for the soil. The results of this study can provide a basis for the remediation of Cd-contaminated acidic paddy soils.

19.
Heliyon ; 8(2): e09009, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35243108

RESUMEN

Tamarindus indica L. is a forest plant species widely used in semi-arid regions and has an important socio-economic role. A 90 d greenhouse pot experiment was conducted to evaluate the efficiency of soil amendments with biochar and/or three Arbuscular Mycorrhizal Fungi (AMF) strains; Rhizophagus fasciculatus (Rf), Rhizophagus aggregatus (Ra), and Rhizophagus irregularis (Ri) on T. indica grown under aluminum stress. The amendments consisted of 5% biochar and 20 g kg-1 AMF as (i) control; (ii) biochar; (iii) biochar + Rf; (iv) biochar + Ra; (v) biochar + Ri; (vi) Rf; (vii) Ra; (viii) Ri. The treatments with biochar significantly (P < 0.05) increased soil pH and reduced the content of soil exchangeable Al3+ relative to the control and exclusive AMF treatments. All the treatments improved total nitrogen and phosphorus uptake by roots and shoot of T. indica and resulted in improved plant growth and root/shoot dry weight. The ability of biochar to enhance the soil's water-holding capacity played a key role in improving the intensity of mycorrhization. Overall, biochar amendments significantly improved the photosynthetic potential of T. indica and the activities of antioxidant enzymes compared to other treatments. Thus, the combined effects of enhanced (a) soil physicochemical parameters, (b) mycorrhization, (c) nutrient uptake, (d) photosynthetic potential, and (e) antioxidant activities played an important role in mitigating Al-related stress to improve the growth of T. indica. Therefore, the application of biochar in combination with AMFs can serve as a strategy for ensuring plant biodiversity in acid and Al-toxic soils in arid and semi-arid regions in Africa.

20.
Plants (Basel) ; 10(11)2021 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-34834853

RESUMEN

This study reports the mitigating strategy against salinity by exploring the potential effects of biochar (5%), Arbuscular mycorrhizal fungi (20 g/pot, AMF), and biochar + AMF on maize (Zea mays L.) plants grown under saline stress in a greenhouse. The maize was grown on alkaline soil and subjected to four different saline levels; 0, 50, 100, and 150 mM NaCl. After 90 d for 100 mM NaCl treatment, the plant's height and fresh weight were reduced by 17.84% and 39.28%, respectively, compared to the control. When the saline-treated soil (100 mM NaCl) was amended with AMF, biochar, and biochar + AMF, the growth parameters were increased by 22.04%, 26.97%, 30.92% (height) and 24.79%, 62.36%, and 107.7% (fresh weight), respectively. Compared to the control and single AMF/biochar treatments, the combined application of biochar and AMF showed the most significant effect in improving maize growth under saline stress. The superior mitigating effect of biochar + AMF was attributed to its effective ability in (i) improving soil nutrient content, (ii) enhancing plant nutrient uptake, (iii) increasing the activities of antioxidant enzymes, and (iv improving the contents of palmitoleic acid (C16:1), oleic acid (C18:1), linoleic acid (C18:2), and linolenic acid (C18:3). Thus, our study shows that amending alkaline and saline soils with a combination of biochar-AMF can effectively mitigate abiotic stress and improve plant growth. Therefore, it can serve as a reference for managing salinity stress in agricultural soils.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA