Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sensors (Basel) ; 24(13)2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-39001165

RESUMEN

The development of contactless methods to assess the degree of personal hygiene in elderly people is crucial for detecting frailty and providing early intervention to prevent complete loss of autonomy, cognitive impairment, and hospitalisation. The unobtrusive nature of the technology is essential in the context of maintaining good quality of life. The use of cameras and edge computing with sensors provides a way of monitoring subjects without interrupting their normal routines, and has the advantages of local data processing and improved privacy. This work describes the development an intelligent system that takes the RGB frames of a video as input to classify the occurrence of brushing teeth, washing hands, and fixing hair. No action activity is considered. The RGB frames are first processed by two Mediapipe algorithms to extract body keypoints related to the pose and hands, which represent the features to be classified. The optimal feature extractor results from the most complex Mediapipe pose estimator combined with the most complex hand keypoint regressor, which achieves the best performance even when operating at one frame per second. The final classifier is a Light Gradient Boosting Machine classifier that achieves more than 94% weighted F1-score under conditions of one frame per second and observation times of seven seconds or more. When the observation window is enlarged to ten seconds, the F1-scores for each class oscillate between 94.66% and 96.35%.


Asunto(s)
Algoritmos , Fragilidad , Humanos , Fragilidad/diagnóstico , Anciano , Monitoreo Fisiológico/métodos , Monitoreo Fisiológico/instrumentación , Femenino , Masculino , Grabación en Video/métodos , Aprendizaje Automático
2.
Sensors (Basel) ; 23(7)2023 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-37050597

RESUMEN

American football is the sport with the highest rates of concussion injuries. Biomedical engineering applications may support athletes in monitoring their injuries, evaluating the effectiveness of their equipment, and leading industrial research in this sport. This literature review aims to report on the applications of biomedical engineering research in American football, highlighting the main trends and gaps. The review followed the PRISMA guidelines and gathered a total of 1629 records from PubMed (n = 368), Web of Science (n = 665), and Scopus (n = 596). The records were analyzed, tabulated, and clustered in topics. In total, 112 studies were selected and divided by topic in the biomechanics of concussion (n = 55), biomechanics of footwear (n = 6), biomechanics of sport-related movements (n = 6), the aerodynamics of football and catch (n = 3), injury prediction (n = 8), heat monitoring of physiological parameters (n = 8), and monitoring of the training load (n = 25). The safety of players has fueled most of the research that has led to innovations in helmet and footwear design, as well as improvements in the understanding and prevention of injuries and heat monitoring. The other important motivator for research is the improvement of performance, which has led to the monitoring of training loads and catches, and studies on the aerodynamics of football. The main gaps found in the literature were regarding the monitoring of internal loads and the innovation of shoulder pads.


Asunto(s)
Traumatismos en Atletas , Conmoción Encefálica , Fútbol Americano , Fútbol , Humanos , Fútbol Americano/lesiones , Fútbol Americano/fisiología , Conmoción Encefálica/prevención & control , Atletas , Dispositivos de Protección de la Cabeza , Traumatismos en Atletas/prevención & control
3.
Sensors (Basel) ; 22(9)2022 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-35591084

RESUMEN

BACKGROUND: Muscular-activity timing is useful information that is extractable from surface EMG signals (sEMG). However, a reference method is not available yet. The aim of this study is to investigate the reliability of a novel machine-learning-based approach (DEMANN) in detecting the onset/offset timing of muscle activation from sEMG signals. METHODS: A dataset of 2880 simulated sEMG signals, stratified for signal-to-noise ratio (SNR) and time support, was generated to train a hidden single-layer fully-connected neural network. DEMANN's performance was evaluated on simulated sEMG signals and two different datasets of real sEMG signals. DEMANN was validated against different reference algorithms, including the acknowledged double-threshold statistical algorithm (DT). RESULTS: DEMANN provided a reliable prediction of muscle onset/offset in simulated and real sEMG signals, being minimally affected by SNR variability. When directly compared with state-of-the-art algorithms, DEMANN introduced relevant improvements in prediction performances. CONCLUSIONS: These outcomes support DEMANN's reliability in assessing onset/offset events in different motor tasks and the condition of signal quality (different SNR), improving reference-algorithm performances. Unlike other works, DEMANN's adopts a machine learning approach where a neural network is trained by only simulated sEMG signals, avoiding the possible complications and costs associated with a typical experimental procedure, making this approach suitable to clinical practice.


Asunto(s)
Aprendizaje Automático , Redes Neurales de la Computación , Algoritmos , Electromiografía/métodos , Reproducibilidad de los Resultados
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA