Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 93
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Neurosci Lett ; 836: 137885, 2024 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-38914276

RESUMEN

To investigate the precise mechanism of xenon (Xe), pharmacologically isolated AMPA/KA and NMDA receptor-mediated spontaneous (s) and evoked (e) excitatory postsynaptic currents (s/eEPSCAMPA/KA and s/eEPSCNMDA) were recorded from mechanically isolated single spinal sacral dorsal commissural nucleus (SDCN) neurons attached with glutamatergic nerve endings (boutons) using conventional whole-cell patch-clamp technique. We analysed kinetic properties of both s/eEPSCAMPA/KA and s/eEPSCNMDA by focal single- and/or paired-pulse electrical stimulation to compare them. The s/eEPSCNMDA showed smaller amplitude, slower rise time, and slower 1/e decay time constant (τDecay) than those of s/eEPSCAMPA/KA. We previously examined how Xe modulates s/eEPSCAMPA/KA, therefore, examined the effects on s/eEPSCNMDA in the present study. Xe decreased the frequency and amplitude of sEPSCNMDA, and decreased the amplitude but increased the failure rate and paired-pulse ratio of eEPSCNMDA without affecting their τDecay. It was concluded that Xe might suppress NMDA receptor-mediated synaptic transmission via both presynaptic and postsynaptic mechanisms.

2.
J Pharmacol Exp Ther ; 386(3): 331-343, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37391223

RESUMEN

The effects of a general anesthetic xenon (Xe) on spontaneous, miniature, electrically evoked synaptic transmissions were examined using the "synapse bouton preparation," with which we can clearly evaluate pure synaptic responses and accurately quantify pre- and postsynaptic transmissions. Glycinergic and glutamatergic transmissions were investigated in rat spinal sacral dorsal commissural nucleus and hippocampal CA3 neurons, respectively. Xe presynaptically inhibited spontaneous glycinergic transmission, the effect of which was resistant to tetrodotoxin, Cd2+, extracellular Ca2+, thapsigargin (a selective sarcoplasmic/endoplasmic reticulum Ca2+-ATPase inhibitor), SQ22536 (an adenylate cyclase inhibitor), 8-Br-cAMP (membrane-permeable cAMP analog), ZD7288 (an hyperpolarization-activated cyclic nucleotide-gated channel blocker), chelerythrine (a PKC inhibitor), and KN-93 (a CaMKII inhibitor) while being sensitive to PKA inhibitors (H-89, KT5720, and Rp-cAMPS). Moreover, Xe inhibited evoked glycinergic transmission, which was canceled by KT5720. Like glycinergic transmission, spontaneous and evoked glutamatergic transmissions were also inhibited by Xe in a KT5720-sensitive manner. Our results suggest that Xe decreases glycinergic and glutamatergic spontaneous and evoked transmissions at the presynaptic level in a PKA-dependent manner. These presynaptic responses are independent of Ca2+ dynamics. We conclude that PKA can be the main molecular target of Xe in the inhibitory effects on both inhibitory and excitatory neurotransmitter release. SIGNIFICANCE STATEMENT: Spontaneous and evoked glycinergic and glutamatergic transmissions were investigated using the whole-cell patch clamp technique in rat spinal sacral dorsal commissural nucleus and hippocampal CA3 neurons, respectively. Xenon (Xe) significantly inhibited glycinergic and glutamatergic transmission presynaptically. As a signaling mechanism, protein kinase A was responsible for the inhibitory effects of Xe on both glycine and glutamate release. These results may help understand how Xe modulates neurotransmitter release and exerts its excellent anesthetic properties.


Asunto(s)
Proteínas Quinasas Dependientes de AMP Cíclico , Xenón , Ratas , Animales , Ratas Wistar , Xenón/farmacología , Xenón/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Neuronas , Transmisión Sináptica , Terminales Presinápticos/metabolismo , Hipocampo/metabolismo , Médula Espinal , Neurotransmisores/metabolismo
3.
Antioxidants (Basel) ; 12(6)2023 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-37371975

RESUMEN

OBJECTIVE: Molecular hydrogen (H2) exhibits antioxidant, anti-inflammatory and anti-apoptotic effects, and has shown benefits in glucose and lipid metabolism in certain animal metabolic disorder models. However, the potential benefits of H2 treatment in individuals with impaired fasting glucose (IFG) has seldom been studied. This randomized controlled study (RCT) aims to investigate the effects of hydrogen-rich water (HRW) on IFG subjects and explore the underlying mechanism involved. METHODS: Seventy-three patients with IFG were enrolled in a randomized, double-blind, placebo-controlled clinical study. These patients were assigned to receive either 1000 mL per day of HRW or placebo pure water (no H2 infusion) for a duration of eight weeks. Metabolic parameters and fecal gut microbiota were assessed at baseline (week 0) and at week 8. A combined analysis of metabolomics and intestinal microbiota was conducted to investigate the correlation between the effect of H2 on the metabolisms and the diversity of intestinal flora in the IGF patients. RESULTS: Both pure water and HRW demonstrated a significant reduction in fasting blood glucose in IFG patients, with a significant difference between pure water and HRW after eight weeks. Among IFG patients with abnormal pre-experimental fatty liver, 62.5% (10/16) in the HRW group and 31.6% (6/19) in the pure water group achieved remission. Furthermore, 16S RNA analysis revealed HRW-modified gut microbiota dysbiosis in the fecal samples of IGF patients. Through Pearson correlation analysis, the differential gut microbiota obtained by 16S analysis was found to be highly correlated with nine metabolites. CONCLUSION: H2 slightly improved metabolic abnormalities and gut microbiota dysbiosis, providing a novel target and theoretical basis for the prevention and treatment of blood glucose regulation in patients with IFG.

4.
Pharmaceuticals (Basel) ; 16(6)2023 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-37375765

RESUMEN

Knowledge of the biological effects of molecular hydrogen (H2), hydrogen gas, is constantly advancing, giving a reason for the optimism in several healthcare practitioners regarding the management of multiple diseases, including socially significant ones (malignant neoplasms, diabetes mellitus, viral hepatitis, mental and behavioral disorders). However, mechanisms underlying the biological effects of H2 are still being actively debated. In this review, we focus on mast cells as a potential target for H2 at the specific tissue microenvironment level. H2 regulates the processing of pro-inflammatory components of the mast cell secretome and their entry into the extracellular matrix; this can significantly affect the capacity of the integrated-buffer metabolism and the structure of the immune landscape of the local tissue microenvironment. The analysis performed highlights several potential mechanisms for developing the biological effects of H2 and offers great opportunities for translating the obtained findings into clinical practice.

5.
Pharmacol Res ; 180: 106227, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35452800

RESUMEN

Alzheimer's disease (AD) has become a major public health problem that affects the elderly population. Therapeutic compounds with curative effects are not available due to the complex pathogenesis of AD. Daphnetin, a natural coumarin derivative and inhibitor of various kinases, has anti-inflammatory and antioxidant activities. In this study, we found that daphnetin improved spatial learning and memory in an amyloid precursor protein (APP)/presenilin 1 (PS1) double-transgenic mouse model of AD. Daphnetin markedly decreased the levels of amyloid-ß peptide 1-40 (Aß40) and 1-42 (Aß42) in the cerebral cortex, downregulated the expressions of enzymes involved in APP processing, e.g., beta-site APP-cleaving enzyme (BACE), nicastrin and presenilin enhancer protein 2 (PEN2). We further found the reduced serum levels of inflammatory factors, including interleukin-1ß (IL-1ß), interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α) and chemokine (C-C motif) ligand 3 (CCL3), while daphnetin increased total antioxidant capacity (T-AOC) and superoxide dismutase (SOD) levels in the serum. Interestingly, daphnetin markedly decreased the expression of glial fibrillary acidic protein (GFAP) and the upstream regulatory molecule- phosphorylated signal transducer and activator of transcription 3 (p-STAT3) in APP/PS1 mice, and mainly inhibited the phosphorylation of STAT3 at Ser727 to decrease GFAP expression evidenced in a LPS-activated glial cell model. These results suggest that daphnetin ameliorates cognitive deficits and that Aß deposition in APP/PS1 mice is mainly correlated with astrocyte activation and APP processing.


Asunto(s)
Enfermedad de Alzheimer , Precursor de Proteína beta-Amiloide , Anciano , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Animales , Antioxidantes/uso terapéutico , Modelos Animales de Enfermedad , Proteína Ácida Fibrilar de la Glía/metabolismo , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Presenilina-1/genética , Presenilina-1/metabolismo , Presenilina-1/uso terapéutico , Factor de Transcripción STAT3/metabolismo , Umbeliferonas
6.
Food Funct ; 12(22): 11704-11716, 2021 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-34730571

RESUMEN

In addition to beta-amyloid (Aß) plaques and neurofibrillary tangles, Alzheimer's disease (AD) is typically triggered or accompanied by abnormal inflammation, oxidative stress and astrocyte activation. Safflower (Carthamus tinctorius L.) leaf, featuring functional ingredients, is a commonly consumed leafy vegetable. Whether and how dietary safflower leaf powder (SLP) ameliorates cognitive function in an AD mouse model has remained minimally explored. Therefore, we orally administered SLP to APP/PS1 transgenic mice to explore the neuroprotective effects of SLP in preventing AD progression. We found that SLP markedly improved cognitive impairment in APP/PS1 mice, as indicated by the water maze test. We further demonstrated that SLP treatment ameliorated inflammation, oxidative stress and excessive astrocyte activation. Further investigation indicated that SLP decreased the Aß burden in APP/PS1 mice by mediating excessive astrocyte activation. Our study suggests that safflower leaf is possibly a promising, cognitively beneficial food for preventing and alleviating AD-related dementia.


Asunto(s)
Astrocitos/efectos de los fármacos , Carthamus tinctorius/química , Cognición/efectos de los fármacos , Extractos Vegetales/farmacología , Enfermedad de Alzheimer/metabolismo , Animales , Disfunción Cognitiva/metabolismo , Modelos Animales de Enfermedad , Femenino , Ratones , Ratones Transgénicos , Prueba del Laberinto Acuático de Morris/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Hojas de la Planta/química
7.
Med Gas Res ; 11(4): 174-186, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34213500

RESUMEN

Among medical gases, including gases used therapeutically, this review discusses the comparative physiological activity of three gases - ozone (O3), xenon (Xe) and molecular hydrogen (H2), which together form representatives of three types of substances - typical oxidizing, inert, and typical reducing agents. Upon analysis of published and proprietary data, we concluded that these three medical gases can manipulate the neuroendocrine system, by modulating the production or release of hormones via the hypothalamic-pituitary-adrenal, hypothalamic-pituitary-thyroid, hypothalamic-pituitary-gonadal axes, or the gastrointestinal pathway. With repeated administration of the gases over time, these modulations become a predictable consequence of conditioned homeostatic reflexes, resulting in regulation of physiological activity. For example, the regular activation of the unconditioned defense reflex in response to repeated intoxication by ozone leads to the formation of an anticipatory stable conditioned response, which counteracts the toxic action of O3. The concept of a Pavlovian conditioned reflex (or hormoligosis) is a brief metaphor for the understanding the therapeutic effect of systemic ozone therapy.


Asunto(s)
Ozono , Xenón , Sistema Endocrino , Hidrógeno , Hipófisis
8.
Explor Target Antitumor Ther ; 2(5): 401-415, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-36045706

RESUMEN

Cancer is an aging-associated disease and caused by genomic instability that is driven by the accumulation of mutations and epimutations in the aging process. Although Ca2+ signaling, reactive oxygen species (ROS) accumulation, DNA damage response (DDR) and senescence inflammation response (SIR) are processed during genomic instability, the underlying mechanism for the cause of genomic instability and cancer development is still poorly understood and needs to be investigated. Nociceptive transient receptor potential (TRP) channels, which firstly respond to environmental stimuli, such as microbes, chemicals or physical injuries, potentiate regulation of the aging process by Ca2+ signaling. In this review, the authors provide an explanation of the dual role of nociceptive TRP channels in regulating cancer progression, initiating cancer progression by aging-induced genomic instability, and promoting malignancy by epigenetic regulation. Thus, therapeutically targeting nociceptive TRP channels seems to be a novel strategy for treating cancers.

9.
Curr Pharm Des ; 27(5): 585-591, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33076798

RESUMEN

One of the beneficial effects of molecular hydrogen (H2, hydrogen gas) is neuroprotection and prevention of neurological disorders. It is important and useful if taking H2 every day can prevent or ameliorate the progression of neurodegenerative disorders, such as Parkinson's disease or Alzheimer's disease, both lacking specific therapeutic drugs. There are several mechanisms of how H2 protects neuronal damage. Anti-oxidative, anti-inflammatory, and the regulation of the endocrine system via stomach-brain connection seem to play an important role. At the cellular and tissue level, H2 appears to prevent the production of reactive oxygen species (ROS), and not only hydroxy radical (•OH) but also superoxide. In Parkinson's disease model mice, chronic intake of H2 causes the release of ghrelin from the stomach. In Alzheimer's disease model mice, sex-different neuroprotection is observed by chronic intake of H2. In female mice, declines of estrogen and estrogen receptor-ß (ERß) are prevented by H2, upregulating brain-derived neurotrophic factor (BDNF) and its receptor, tyrosine kinase receptor B (TrkB). The question of how drinking H2 upregulates the release of ghrelin or attenuates the decline of estrogen remains to be investigated and the mechanism of how H2 modulates endocrine systems and the fundamental question of what or where is the target of H2 needs to be elucidated for a better understanding of the effects of H2.


Asunto(s)
Enfermedades Neurodegenerativas , Fármacos Neuroprotectores , Animales , Femenino , Hidrógeno , Ratones , Neuroprotección , Fármacos Neuroprotectores/farmacología , Estrés Oxidativo , Especies Reactivas de Oxígeno
10.
Front Cell Neurosci ; 14: 268, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33192304

RESUMEN

Thyroid hormones are critical for the regulation of development and differentiation of neurons and glial cells in the central nervous system (CNS). We have previously reported the sex-dependent changes of glial morphology in the brain under the state of hyperthyroidism. Here, we examined sex-dependent changes in spine structure of granule neurons in the dentate gyrus of hippocampus in male and female mice with hyperthyroidism. Using FIB/SEM (focused ion beam/scanning electron microscopy), three-dimensional reconstructed structures of dendritic spines in dentate granule cells were analyzed. Dendritic spine density in granule cells increased significantly in both male and female mice with hyperthyroidism. The decrease in spine volume was observed only in female mice. These findings suggest that hyperthyroidism induces the formation of spines with normal size in male mice but the formation of spines with small size in female mice. To evaluate an outcome of neuronal and previously observed glial changes, behavioral tests were performed. Male mice with hyperthyroidism showed increased locomotor activity in the open field test, while female mice showed elevated immobility time in the tail suspension test, reflecting depression-like behavior. Although direct link between changes in spine and behavioral modifications requires further analysis, our results may help to understand gender-dependent neurological and psychological symptoms observed in patients with hyperthyroidism.

11.
Acta Neuropathol Commun ; 8(1): 159, 2020 09 10.
Artículo en Inglés | MEDLINE | ID: mdl-32912327

RESUMEN

Microglia are the primary immune-competent cells of the central nervous system (CNS) and sense both pathogen- and host-derived factors through several receptor systems including the Toll-like receptor (TLR) family. Although TLR5 has previously been implicated in different CNS disorders including neurodegenerative diseases, its mode of action in the brain remained largely unexplored. We sought to determine the expression and functional consequences of TLR5 activation in the CNS. Quantitative real-time PCR and immunocytochemical analysis revealed that microglia is the major CNS cell type that constitutively expresses TLR5. Using Tlr5-/- mice and inhibitory TLR5 antibody we found that activation of TLR5 in microglial cells by its agonist flagellin, a principal protein component of bacterial flagella, triggers their release of distinct inflammatory molecules, regulates chemotaxis, and increases their phagocytic activity. Furthermore, while TLR5 activation does not affect tumor growth in an ex vivo GL261 glioma mouse model, it triggers microglial accumulation and neuronal apoptosis in the cerebral cortex in vivo. TLR5-mediated microglial function involves the PI3K/Akt/mammalian target of rapamycin complex 1 (mTORC1) pathway, as specific inhibitors of this signaling pathway abolish microglial activation. Taken together, our findings establish TLR5 as a modulator of microglial function and indicate its contribution to inflammatory and injurious processes in the CNS.


Asunto(s)
Encéfalo/metabolismo , Encéfalo/patología , Microglía/metabolismo , Neuronas/patología , Receptor Toll-Like 5/metabolismo , Animales , Apoptosis/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados
12.
J Neurophysiol ; 123(6): 2426-2436, 2020 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-32401126

RESUMEN

In this study, the effect of extracellular pH on glutamatergic synaptic transmission was examined in mechanically dissociated rat hippocampal CA3 pyramidal neurons using a whole-cell patch-clamp technique under voltage-clamp conditions. Native synaptic boutons were isolated without using any enzymes, using a so-called "synapse bouton preparation," and preserved for the electrical stimulation of single boutons. Both the frequency and amplitude of spontaneous excitatory postsynaptic currents (sEPSCs) were found to decrease and increase in response to modest acidic (~pH 6.5) and basic (~pH 8.5) solutions, respectively. These changes in sEPSC frequency were not affected by the addition of TTX but completely disappeared by successive addition of Cd2+. However, changes in sEPSC amplitude induced by acidic and basic extracellular solutions were not affected by the addition of neither TTX nor Cd2+. The glutamate-induced whole-cell currents were decreased and increased by acidic and basic solutions, respectively. Acidic pH also decreased the amplitude and increased the failure rate (Rf) and paired-pulse rate (PPR) of glutamatergic electrically evoked excitatory postsynaptic currents (eEPSCs), while a basic pH increased the amplitude and decreased both the Rf and PPR of eEPSCs. The kinetics of the currents were not affected by changes in pH. Acidic and basic solutions decreased and increased voltage-gated Ca2+ but not Na+ channel currents in the dentate gyrus granule cell bodies. Our results indicate that extracellular pH modulates excitatory transmission via both pre- and postsynaptic sites, with the presynaptic modulation correlated to changes in voltage-gated Ca2+ channel currents.NEW & NOTEWORTHY The effects of external pH changes on spontaneous, miniature, and evoked excitatory synaptic transmission in CA3 hippocampal synapses were examined using the isolated nerve bouton preparation, which allowed for the accurate regulation of extracellular pH at the synapses. Acidification generally reduced transmission, partly via effects on presynaptic Ca2+ channel currents, while alkalization generally enhanced transmission. Both pre- and postsynaptic sites contributed to these effects.


Asunto(s)
Región CA3 Hipocampal/fisiología , Potenciales Postsinápticos Excitadores/fisiología , Concentración de Iones de Hidrógeno , Terminales Presinápticos/fisiología , Células Piramidales/fisiología , Animales , Región CA3 Hipocampal/química , Femenino , Ácido Glutámico/metabolismo , Masculino , Técnicas de Placa-Clamp , Terminales Presinápticos/química , Células Piramidales/química , Ratas , Ratas Wistar
13.
Diabetes Metab Syndr Obes ; 13: 889-896, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32273740

RESUMEN

PURPOSE: Metabolic syndrome is associated with several medical risk factors including dyslipidemia, hyperglycemia, and obesity, which has become a worldwide pandemic. The sequelae of this condition increase the risk of cardiovascular and neurological disease and increased mortality. Its pathophysiology is associated with redox dysregulation, excessive inflammation, and perturbation of cellular homeostasis. Molecular hydrogen (H2) may attenuate oxidative stress, improve cellular function, and reduce chronic inflammation. Pre-clinical and clinical studies have shown promising effects of H2-rich water (HRW) on specific features of metabolic syndrome, yet the effects of long-term, high-concentration HRW in this prevalent condition remain poorly addressed. METHODS: We conducted a randomized, double-blinded, placebo-controlled trial in 60 subjects (30 men and 30 women) with metabolic syndrome. An initial observation period of one week was used to acquire baseline clinical data followed by randomization to either placebo or high-concentration HRW (> 5.5 millimoles of H2 per day) for 24 weeks. RESULTS: Supplementation with high-concentration HRW significantly reduced blood cholesterol and glucose levels, attenuated serum hemoglobin A1c, and improved biomarkers of inflammation and redox homeostasis as compared to placebo (P < 0.05). Furthermore, H2 tended to promote a mild reduction in body mass index and waist-to-hip ratio. CONCLUSION: Our results give further credence that high-concentration HRW might have promising effects as a therapeutic modality for attenuating risk factors of metabolic syndrome.

14.
Brain Res Bull ; 157: 37-40, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31954812

RESUMEN

Microglia are critical for the refinement of neural networks that takes place during the perinatal period. Their phenotype and actions are guided by the signals produced by neighbouring cells and hormones present in their surrounding milieu. Cell populations and the signals they produce differ between regions. The fact that thyroid hormones (THs) promote the growth and morphological differentiation of microglia within the cortex contributes to the TH's powerful actions on the developing brain. The brainstem is especially active during early life owing to its role in generation of the rhythmic respiratory motor command. Despite evidences indicating that THs are necessary to proper development of the neural networks regulating this vital homeostatic function, their actions on microglia originating from the brainstem remain unknown. Using primary cultured microglia from newborn mice (C57BL/6J), we first report that regulation of microglial motility by THs is different between cortex and brainstem. Microglial motility (µm traveled over 3 h) was monitored with or without triiodothyronine (T3, 1µM). Exposure to T3 did not stimulate microglial motility from brainstem, but significantly stimulated (316 %) when they were co-cultured with neurons. Motility of cortex microglia was stimulated to the similar extent either with or without neurons. These data suggest that the microglial function in different regions of the brain is determined by the surrounding environment.


Asunto(s)
Tronco Encefálico/fisiología , Movimiento Celular/fisiología , Corteza Cerebral/fisiología , Microglía/fisiología , Hormonas Tiroideas/metabolismo , Animales , Animales Recién Nacidos , Técnicas de Cultivo de Célula , Femenino , Ratones , Ratones Endogámicos C57BL , Neuronas/fisiología
15.
Free Radic Biol Med ; 148: 42-51, 2020 02 20.
Artículo en Inglés | MEDLINE | ID: mdl-31899342

RESUMEN

DNA 5-hydroxymethylcytosine (5hmC), converted from 5-methylcytosine (5mC), is highly enriched in the central nervous system and is dynamically regulated during neural development and metabolic disorders. However, whether and how neural 5hmC is involved in metabolic disorders shows little evidence. In this study, significant downregulation of the DNA 5hmC were observed in the cerebral cortex of HFD-induced diabetic mice, while phosphated AMP-activated protein kinase (p-AMPK) and ten-eleven translocation 2 (TET2) reduced, and mitochondrial dysfunction. We futher demonstrated that dysregulation of 5hmC preceded mitochondrial dysfunction in palmitic acid-treated HT22 cells and decreased level of 5hmC led to mitochondrial respiratory activity and apoptosis in HT22 cells. Taken together, our results reveal that neural 5hmC undergoes remodeling during HFD-induced metabolic disorder, and 5hmC downregulation significantly impacts on mitochondrial respiration and cell apoptosis. This study suggests a novel link between metabolic disorder and neural impairment through neural DNA 5hmC remodeling and resultant mitochondrial dysfunction.


Asunto(s)
Metilación de ADN , Diabetes Mellitus Experimental , 5-Metilcitosina/análogos & derivados , Animales , ADN/metabolismo , Proteínas de Unión al ADN/metabolismo , Diabetes Mellitus Experimental/genética , Dieta Alta en Grasa/efectos adversos , Regulación hacia Abajo , Ratones , Mitocondrias/metabolismo , Proteínas Proto-Oncogénicas/metabolismo
16.
Can J Physiol Pharmacol ; 97(10): 909-915, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31100203

RESUMEN

Molecular hydrogen (H2) showed protection against various kinds of oxidative-stress-related diseases. First, it was reported that the mechanism of therapeutic effects of H2 was antioxidative effect due to inhibition of the most cytotoxic reactive oxygen species, hydroxy radical (•OH). However, after chronic administration of H2 in drinking water, oxidative-stress-induced nerve injury is significantly attenuated even in the absence of H2. It suggests indirect signaling of H2 and gastrointestinal tract is involved. Indirect effects of H2 could be tested by giving H2 water only before nerve injury, as preconditioning. For example, preconditioning of H2 for certain a period (∼7 days) in Parkinson's disease model mice shows significant neuroprotection. As the mechanism of indirect effect, H2 in drinking water induces ghrelin production and release from the stomach via ß1-adrenergic receptor stimulation. Released ghrelin circulates in the body, being transported across the blood-brain barrier, activates its receptor, growth-hormone secretagogue receptor. H2-induced upregulation of ghrelin mRNA is also shown in ghrelin-producing cell line, SG-1. These observations help with understanding the chronic effects of H2 and raise intriguing preventive and therapeutic options using H2.


Asunto(s)
Ghrelina/metabolismo , Hidrógeno/administración & dosificación , Enfermedades Neurodegenerativas/terapia , Neuroprotección/efectos de los fármacos , Traumatismos de los Nervios Periféricos/terapia , Animales , Barrera Hematoencefálica/metabolismo , Modelos Animales de Enfermedad , Ingestión de Líquidos , Mucosa Gástrica/efectos de los fármacos , Mucosa Gástrica/metabolismo , Ghrelina/sangre , Humanos , Enfermedades Neurodegenerativas/sangre , Estrés Oxidativo/efectos de los fármacos , Traumatismos de los Nervios Periféricos/sangre , Receptores de Ghrelina/metabolismo , Transducción de Señal/efectos de los fármacos , Resultado del Tratamiento , Agua/química
17.
Int J Mol Sci ; 20(4)2019 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-30795555

RESUMEN

As part of the blood-brain-barrier, astrocytes are ideally positioned between cerebral vasculature and neuronal synapses to mediate nutrient uptake from the systemic circulation. In addition, astrocytes have a robust enzymatic capacity of glycolysis, glycogenesis and lipid metabolism, managing nutrient support in the brain parenchyma for neuronal consumption. Here, we review the plasticity of astrocyte energy metabolism under physiologic and pathologic conditions, highlighting age-dependent brain dysfunctions. In astrocytes, glycolysis and glycogenesis are regulated by noradrenaline and insulin, respectively, while mitochondrial ATP production and fatty acid oxidation are influenced by the thyroid hormone. These regulations are essential for maintaining normal brain activities, and impairments of these processes may lead to neurodegeneration and cognitive decline. Metabolic plasticity is also associated with (re)activation of astrocytes, a process associated with pathologic events. It is likely that the recently described neurodegenerative and neuroprotective subpopulations of reactive astrocytes metabolize distinct energy substrates, and that this preference is supposed to explain some of their impacts on pathologic processes. Importantly, physiologic and pathologic properties of astrocytic metabolic plasticity bear translational potential in defining new potential diagnostic biomarkers and novel therapeutic targets to mitigate neurodegeneration and age-related brain dysfunctions.


Asunto(s)
Adaptación Fisiológica , Envejecimiento/metabolismo , Astrocitos/metabolismo , Encéfalo/metabolismo , Metabolismo Energético , Animales , Encéfalo/crecimiento & desarrollo , Humanos
18.
Front Psychiatry ; 9: 589, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30505285

RESUMEN

Fatigue is commonly reported in a variety of illnesses and has major impact on quality of life. Chronic fatigue syndrome (CFS) is a debilitating syndrome of unknown etiology. The clinical symptoms include problems in neuroendocrine, autonomic, and immune systems. It is becoming clear that the brain is the central regulator of CFS. For example, neuroinflammation, especially induced by activation of microglia and astrocytes, may play a prominent role in the development of CFS, though little is known about molecular mechanisms. Many possible causes of CFS have been proposed. However, in this mini-review, we summarize evidence for a role for microglia and astrocytes in the onset and the maintenance of immunologically induced CFS. In a model using virus mimicking synthetic double-stranded RNA, infection causes sequential signaling such as increased blood brain barrier (BBB) permeability, microglia/macrophage activation through Toll-like receptor 3 (TLR3) signaling, secretion of IL-1ß, upregulation of the serotonin transporter (5-HTT) in astrocytes, reducing extracellular serotonin (5-HT) levels and hence reduced activation of 5-HT1A receptor subtype. Hopefully, drug discovery targeting these pathways may be effective for CFS therapy.

20.
J Pharmacol Sci ; 138(2): 123-130, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-30360946

RESUMEN

Sodium salt of deoxyribonucleic acid (DNA), Derinat, isolated from the soft roes of Russian sturgeon, has been utilized as an immunomodulator for the treatment of reactive oxygen species (ROS)-associated diseases in clinics. Here we show that treatment with Derinat has an anti-inflammatory and anti-oxidative effects on cutaneous ischemia-reperfusion (IR) injury in pressure ulcer (PU) model mice. Dorsal skin damage and dermal edema in mild PU model mice were attenuated by treatment with Derinat. Immunohistochemical and biochemical analyses showed that Derinat suppressed IR-induced oxidative damage, i.e. accumulation of 8-hydroxy-2'-deoxyguanosine (8-OHdG), and related inflammatory factors such as cyclooxygenase 2 (COX-2) and IL-6 receptor (IL-6R) in dorsal skin from PU model mice. We also verified that phospholyated/non-phosphorylated ratio of extracellular signal-regulated kinase (Erk) and p38 mitogen-activated protein kinase (MAPK) increased after IR, which were attenuated by Derinat. We then compared the effect of Derinat with that of salmon DNA and other PU therapeutic agents, prostaglandin E1 (PGE1) and basic fibroblast growth factor (bFGF), by using severe PU model mice. The effects of Derinat and salmon-DNA were compatible with those of PGE1 and bFGF. These results suggest that Derinat other fish-derived DNA formulation could be effective enough and become intriguing new therapeutic options.


Asunto(s)
ADN/farmacología , ADN/uso terapéutico , Presión/efectos adversos , Daño por Reperfusión/complicaciones , Úlcera Cutánea/tratamiento farmacológico , Úlcera Cutánea/etiología , 8-Hidroxi-2'-Desoxicoguanosina , Animales , Ciclooxigenasa 2/metabolismo , ADN/aislamiento & purificación , Desoxiguanosina/análogos & derivados , Desoxiguanosina/metabolismo , Modelos Animales de Enfermedad , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Peces/metabolismo , Mediadores de Inflamación/metabolismo , Ratones Endogámicos BALB C , Receptores de Interleucina-6/metabolismo , Piel/metabolismo , Úlcera Cutánea/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...