Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-37089710

RESUMEN

Acinetobacter baumannii is an important opportunistic pathogen that causes serious health-related infections, especially in intensive care units. The present study aimed to investigate the antimicrobial activity of Riparin-B (Rip-B) alone and in association with norfloxacin against multidrug-resistant clinical isolates of A. baumannii. For this, the minimum inhibitory concentrations were determined by the microdilution method. For the evaluation of resistance-modulating activity, MIC values for antibiotics were determined in the presence or absence of subinhibitory concentrations of Rip-B or chlorpromazine (CPZ). The AdeABC-AdeRS efflux system genes from these isolates were detected by PCR. Docking studies were also carried out to evaluate the interaction of Riparin-B and the AdeABC-AdeRS efflux system. The study was conducted from 2017 to 2019. The results showed that Rip-B showed weak intrinsic activity against the strains tested. On the other hand, Rip-B was able to modulate norfloxacin's response against A. baumannii strains that express efflux pump-mediated resistance. Docking studies provided projections of the interaction between Rip-B and EtBr with the AdeB protein, suggesting that Rip-B acts by competitive inhibition with the drug. Results found by in vitro and in silico assays suggest that Rip-B, in combination with norfloxacin, has the potential to treat infections caused by multidrug-resistant A. baumanni with efflux pump resistance.

2.
Arch Microbiol ; 204(1): 63, 2021 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-34940944

RESUMEN

The Staphylococcus aureus bacteria is a Gram-positive, immobile, non-spore bacterium, with catalase and positive coagulase, among other characteristics. It is responsible for important infections caused in the population and for hospital infections. Because of that many strategies are being developed to combat the resistance of microorganisms to drugs, in recent times, chalcones have been studied for this purpose. Chalcones are found in parts of plants and can be found, for example, in the roots, leaves, bark, among others, but are mainly found as petal pigments, they are a class of compounds considered an exceptional model due to chemical simplicity and a wide variety of biological activities. This study aimed to evaluate the ability of chalcone (E)-3-(2,4-dichlorophenyl)-1-(2-hydroxyphenyl)prop-2-en-1-one to reverse the efflux pump resistance, present in the bacteria S. aureus 1199B and S. aureus K2068. The synthetic chalcone (E)-3-(2,4-dichlorophenyl)-1-(2-hydroxyphenyl)prop-2-en-1-one was able to synergistically modulate the antibiotic Ciprofloxacino and Ethidium Bromide against the bacterial strain S. aureus K2068, and with the antibiotic Norfloxacino against the strain 1199B. Thus, it is suggested that this chalcone may be acting by inhibiting the efflux pump mechanism of these bactéria. The theoretical physicochemical and pharmacokinetic properties of chalcone showed that the chalocne did not present a severe risk of toxicity, such as genetic mutation or cardiotoxicity. Molecular docking showed that the chalcone could act as a competitive inhibitor of the MepA efflux pump, as at hinders the binding of other substrates, such as EtBr.


Asunto(s)
Chalcona , Chalconas , Antibacterianos/farmacología , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Chalcona/farmacología , Chalconas/farmacología , Pruebas de Sensibilidad Microbiana , Simulación del Acoplamiento Molecular , Proteínas Asociadas a Resistencia a Múltiples Medicamentos , Staphylococcus aureus/metabolismo
3.
Biomed Pharmacother ; 140: 111768, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34058442

RESUMEN

A large number of infections are caused by multi-resistant bacteria worldwide, adding up to a figure of around 700,000 deaths per year. Because of that many strategies are being developed in order to combat the resistance of microorganisms to drugs, in recent times, chalcones have been studied for this purpose. Chalcones are known as α, ß-unsaturated ketones, characterized by having the presence of two aromatic rings that are joined by a three-carbon chain, they are a class of compounds considered an exceptional model due to chemical simplicity and a wide variety of biological activities, which include anticancer, anti-inflammatory, antioxidants, antimicrobials, anti-tuberculosis, anti-HIV, antimalarial, anti-allergic, antifungal, antibacterial, and antileishmanial. The objective of this work was evaluate the antibacterial and antibiotic modifying activity of chalcone (E)-1-(2-hydroxyphenyl)-3-(2,4-dimethoxy-3-methylphenyl)prop-2-en-1-one against the bacteria Staphylococcus aureus carrying a NorA and MepA efflux pump. The results showed that chalcone was able to synergistically modulate the action of Norfloxacin and Ethidium Bromide against the bacteria Staphylococcus aureus 1199B and K2068, respectively. The theoretical physicochemical and pharmacokinetic properties of chalcone showed that the chalcone did not present a severe risk of toxicity such as genetic mutation or cardiotoxicity, constituting a good pharmacological active ingredient.


Asunto(s)
Antibacterianos/farmacología , Proteínas Bacterianas/metabolismo , Chalconas/farmacología , Proteínas de Transporte de Membrana/metabolismo , Staphylococcus aureus/efectos de los fármacos , Antibacterianos/farmacocinética , Proteínas Bacterianas/antagonistas & inhibidores , Chalconas/farmacocinética , Etidio/farmacología , Humanos , Absorción Intestinal , Pruebas de Sensibilidad Microbiana , Modelos Biológicos , Simulación del Acoplamiento Molecular , Norfloxacino/farmacología , Staphylococcus aureus/metabolismo
4.
Eur J Pharm Sci ; 158: 105695, 2021 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-33383131

RESUMEN

Chalcones and their derivatives are substances of great interest for medicinal chemistry due to their antibacterial activities. As the bacterial resistance to clinically available antibiotics has become a worldwide public health problem, it is essential to search for compounds capable of reverting the bacterial resistance. As a possibility, the chalcone class could be an interesting answer to this problem. The chalcones (2E)-1-(4'-aminophenyl)-3-(phenyl)­prop-2-en-1-one (APCHAL), and (2E)-1-(4'-aminophenyl)-3-(4-chlorophenyl)­prop-2-en-1-one (ACLOPHENYL) were synthesized by the Claisen-Schmidt condensation and characterized by 1H and 13C nuclear magnetic resonance (NMR), Fourier-transform infrared (FT-IR), and mass spectrometry (MS), In addition, microbiological tests were performed to investigate the antibacterial activity, modulatory potential, and efflux pump inhibition against Staphylococcus aureus (S. aureus) multi-resistant strains. Regarding the S. aureus Gram-positive model, the APCHAL presented synergism with gentamicin and antagonism with penicillin. APCHAL reduced the Minimum inhibitory concentration (MIC) of gentamicin by almost 70%. When comparing the effects of the antibiotic modifying activity of ACLOPHENYL and APCHAL, a loss of synergism is noted with gentamicin due to the addition of a chlorine to the substance structure. For Escherichia coli (E. coli) a total lack of effect, synergistic or antagonistic, was observed between ACLOPHENYL and the antibiotics. In the evaluation of inhibition of the efflux pump, both chalcones presented a synergistic effect with norfloxacin and ciprofloxacin against S. aureus, although the effect is much less pronounced with ACLOPHENYL. The effect of APCHAL is particularly notable against the K2068 (MepA overexpresser) strain, with synergistic effects with both ciprofloxacin and ethidium bromide. The docking results also show that both compounds bind to roughly the same region of the binding site of 1199B (NorA overexpresser), and that this region overlaps with the preferred binding region of norfloxacin. The APCHAL chalcone may contribute to the prevention or treatment of infectious diseases caused by multidrug-resistant S. aureus.


Asunto(s)
Chalcona , Chalconas , Staphylococcus aureus Resistente a Meticilina , Antibacterianos/farmacología , Proteínas Bacterianas/metabolismo , Chalconas/farmacología , Escherichia coli/metabolismo , Staphylococcus aureus Resistente a Meticilina/metabolismo , Pruebas de Sensibilidad Microbiana , Proteínas Asociadas a Resistencia a Múltiples Medicamentos , Espectroscopía Infrarroja por Transformada de Fourier , Staphylococcus aureus/metabolismo
5.
Antibiotics (Basel) ; 9(6)2020 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-32575738

RESUMEN

Bacterial resistance to antibiotics has become a public health issue around the world. The present study aimed to evaluate the antibacterial activity of chalcones isolated from flowers of Arrabidaea brachypoda, and their potential as efflux pump inhibitors of Staphylococcus aureus efflux pumps. Microdilution assays were performed with natural products from A. brachypoda. Chalcones 1, 3, 4, and 5 did not show intrinsic antimicrobial activity against all S. aureus strains tested, but they were able to potentiate the Norfloxacin action against the SA1199-B (norA) strain, with a better modulating action for the 4 trimethoxylated chalcone. All chalcones were also able to potentiate the action of EtBr against SA1199-B strain, suggesting a potential NorA inhibition. Moreover, chalcone 4 was able to interfere in the activity of MepA, and interfered weakly in the QacA/B activity. Molecular docking analyzes showed that tested chalcones are capable of binding in the hydrophobic cavity of NorA and MepA, in the same Norfloxacin binding site, indicating that chalcone 4 compete with the antibiotic for the same NorA and MepA binding sites. Association of chalcone 4 with Norfloxacin could be an alternative against multidrug resistant S. aureus over-productive of NorA or MepA.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...