Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 34
1.
Immunometabolism (Cobham) ; 5(4): e00035, 2023 Oct.
Article En | MEDLINE | ID: mdl-38027254

N-linked glycosylation is a post-translational modification that results in the decoration of newly synthesized proteins with diverse types of oligosaccharides that originate from the amide group of the amino acid asparagine. The sequential and collective action of multiple glycosidases and glycosyltransferases are responsible for determining the overall size, composition, and location of N-linked glycans that become covalently linked to an asparagine during and after protein translation. A growing body of evidence supports the critical role of N-linked glycan synthesis in regulating many features of T cell biology, including thymocyte development and tolerance, as well as T cell activation and differentiation. Here, we provide an overview of how specific glycosidases and glycosyltransferases contribute to the generation of different types of N-linked glycans and how these post-translational modifications ultimately regulate multiple facets of T cell biology.

2.
Nat Commun ; 14(1): 3928, 2023 07 04.
Article En | MEDLINE | ID: mdl-37402742

Tissue-resident memory (TRM) CD8+ T cells are largely derived from recently activated effector T cells, but the mechanisms that control the extent of TRM differentiation within tissue microenvironments remain unresolved. Here, using an IFNγ-YFP reporter system to identify CD8+ T cells executing antigen-dependent effector functions, we define the transcriptional consequences and functional mechanisms controlled by TCR-signaling strength that occur within the skin during viral infection to promote TRM differentiation. TCR-signaling both enhances CXCR6-mediated migration and suppresses migration toward sphingosine-1-phosphate, indicating the programming of a 'chemotactic switch' following secondary antigen encounter within non-lymphoid tissues. Blimp1 was identified as the critical target of TCR re-stimulation that is necessary to establish this chemotactic switch and for TRM differentiation to efficiently occur. Collectively, our findings show that access to antigen presentation and strength of TCR-signaling required for Blimp1 expression establishes the chemotactic properties of effector CD8+ T cells to promote residency within non-lymphoid tissues.


CD8-Positive T-Lymphocytes , Immunologic Memory , Receptors, Antigen, T-Cell , Skin , Virus Diseases , CD8-Positive T-Lymphocytes/immunology , Receptors, Antigen, T-Cell/metabolism , Skin/immunology , Skin/virology , Virus Diseases/immunology , Cell Movement , Female , Animals , Mice , Mice, Inbred C57BL , Interferon-gamma/metabolism , Positive Regulatory Domain I-Binding Factor 1/metabolism , Receptors, CXCR6/metabolism
3.
Cell Rep ; 42(5): 112407, 2023 05 30.
Article En | MEDLINE | ID: mdl-37083328

Poxvirus infections of the skin are a recent emerging public health concern, yet the mechanisms that mediate protective immunity against these viral infections remain largely unknown. Here, we show that T helper 1 (Th1) memory CD4+ T cells are necessary and sufficient to provide complete and broad protection against poxvirus skin infections, whereas memory CD8+ T cells are dispensable. Core 2 O-glycan-synthesizing Th1 effector memory CD4+ T cells rapidly infiltrate the poxvirus-infected skin microenvironment and produce interferon γ (IFNγ) in an antigen-dependent manner, causing global changes in gene expression to promote anti-viral immunity. Keratinocytes express IFN-stimulated genes, upregulate both major histocompatibility complex (MHC) class I and MHC class II antigen presentation in an IFNγ-dependent manner, and require IFNγ receptor (IFNγR) signaling and MHC class II expression for memory CD4+ T cells to protect the skin from poxvirus infection. Thus, Th1 effector memory CD4+ T cells exhibit potent anti-viral activity within the skin, and keratinocytes are the key targets of IFNγ necessary for preventing poxvirus infection of the epidermis.


CD4-Positive T-Lymphocytes , Poxviridae Infections , Humans , CD8-Positive T-Lymphocytes , Skin/metabolism , Histocompatibility Antigens Class II , Histocompatibility Antigens Class I , Interferon-gamma
4.
PLoS Pathog ; 18(9): e1010783, 2022 09.
Article En | MEDLINE | ID: mdl-36121874

The genome of cowpoxvirus (CPXV) could be considered prototypical for orthopoxviridae (OXPV) since it contains many open reading frames (ORFs) absent or lost in other OPXV, including vaccinia virus (VACV). These additional ORFs are non-essential for growth in vitro but are expected to contribute to the broad host range, virulence and immune evasion characteristics of CPXV. For instance, unlike VACV, CPXV encodes proteins that interfere with T cell stimulation, either directly or by preventing antigen presentation or co-stimulation. When studying the priming of naïve T cells, we discovered that CPXV, but not VACV, encodes a secreted factor that interferes with activation and proliferation of naïve CD8+ and CD4+ T cells, respectively, in response to anti-CD3 antibodies, but not to other stimuli. Deletion mapping revealed that the inhibitory protein is encoded by CPXV14, a small secreted glycoprotein belonging to the poxvirus immune evasion (PIE) family and containing a smallpoxvirus encoded chemokine receptor (SECRET) domain that mediates binding to chemokines. We demonstrate that CPXV14 inhibition of antibody-mediated T cell activation depends on the presence of Fc-gamma receptors (FcγRs) on bystander cells. In vitro, CPXV14 inhibits FcγR-activation by antigen/antibody complexes by binding to FcγRs with high affinity and immobilized CPXV14 can trigger signaling through FcγRs, particularly the inhibitory FcγRIIB. In vivo, CPXV14-deleted virus showed reduced viremia and virulence resulting in reduced weight loss and death compared to wildtype virus whereas both antibody and CD8+ T cell responses were increased in the absence of CPXV14. Furthermore, no impact of CPXV14-deletion on virulence was observed in mice lacking the inhibitory FcγRIIB. Taken together our results suggest that CPXV14 contributes to virulence and immune evasion by binding to host FcγRs.


Cowpox virus , Immune Evasion , Animals , Cowpox virus/genetics , Glycoproteins , Mice , Receptors, Chemokine , Receptors, IgG , Vaccinia virus , Virulence
5.
J Exp Med ; 219(5)2022 05 02.
Article En | MEDLINE | ID: mdl-35353138

Lymphatic vessels are often considered passive conduits that flush antigenic material, pathogens, and cells to draining lymph nodes. Recent evidence, however, suggests that lymphatic vessels actively regulate diverse processes from antigen transport to leukocyte trafficking and dietary lipid absorption. Here we tested the hypothesis that infection-induced changes in lymphatic transport actively contribute to innate host defense. We demonstrate that cutaneous vaccinia virus infection by scarification activates dermal lymphatic capillary junction tightening (zippering) and lymph node lymphangiogenesis, which are associated with reduced fluid transport and cutaneous viral sequestration. Lymphatic-specific deletion of VEGFR2 prevented infection-induced lymphatic capillary zippering, increased fluid flux out of tissue, and allowed lymphatic dissemination of virus. Further, a reduction in dendritic cell migration to lymph nodes in the absence of lymphatic VEGFR2 associated with reduced antiviral CD8+ T cell expansion. These data indicate that VEGFR2-driven lymphatic remodeling is a context-dependent, active mechanism of innate host defense that limits viral dissemination and facilitates protective, antiviral CD8+ T cell responses.


Lymphatic Vessels , Lymph Nodes , Lymphangiogenesis , Lymphatic System , Skin
6.
J Immunol ; 206(11): 2596-2604, 2021 06 01.
Article En | MEDLINE | ID: mdl-33972374

The COVID-19 pandemic is a global health emergency, and the development of a successful vaccine will ultimately be required to prevent the continued spread and seasonal recurrence of this disease within the human population. However, very little is known about either the quality of the adaptive immune response or the viral Ag targets that will be necessary to prevent the spread of the infection. In this study, we generated recombinant Vaccinia virus expressing the full-length spike protein from SARS-CoV-2 (VacV-S) to evaluate the cellular and humoral immune response mounted against this viral Ag in mice. Both CD8+ and CD4+ T cells specific to the SARS-CoV-2 spike protein underwent robust expansion, contraction, and persisted for at least 40 d following a single immunization with VacV-S. Vaccination also caused the rapid emergence of spike-specific IgG-neutralizing Abs. Interestingly, both the cellular and humoral immune responses strongly targeted the S1 domain of spike following VacV-S immunization. Notably, immunization with VacV-expressing spike conjugated to the MHC class II invariant chain, a strategy previously reported by us and others to enhance the immunogenicity of antigenic peptides, did not promote stronger spike-specific T cell or Ab responses in vivo. Overall, these findings demonstrate that an immunization approach using VacV or attenuated versions of VacV expressing the native, full-length SARS-CoV-2 spike protein could be used for further vaccine development to prevent the spread of COVID-19.


Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , Immunity, Cellular , Immunity, Humoral , Immunoglobulin G/immunology , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Vaccinia virus , Animals , Cell Line , Immunization , Mice , SARS-CoV-2/genetics , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/immunology , Vaccinia virus/genetics , Vaccinia virus/immunology
7.
Sci Immunol ; 5(45)2020 03 06.
Article En | MEDLINE | ID: mdl-32144183

Protecting TFH memory CD4+ T cells from NAD-induced cell death reveals both their longevity and plasticity (see related Research Article by Künzli et al.).


Immunity, Humoral , Immunologic Memory , T-Lymphocytes, Helper-Inducer
8.
J Immunol ; 204(6): 1674-1688, 2020 03 15.
Article En | MEDLINE | ID: mdl-32060138

Notch signaling is emerging as a critical regulator of T cell activation and function. However, there is no reliable cell surface indicator of Notch signaling across activated T cell subsets. In this study, we show that Notch signals induce upregulated expression of the Gcnt1 glycosyltransferase gene in T cells mediating graft-versus-host disease after allogeneic bone marrow transplantation in mice. To determine if Gcnt1-mediated O-glycosylation could be used as a Notch signaling reporter, we quantified the core-2 O-glycoform of CD43 in multiple T cell subsets during graft-versus-host disease. Pharmacological blockade of Delta-like Notch ligands abrogated core-2 O-glycosylation in a dose-dependent manner after allogeneic bone marrow transplantation, both in donor-derived CD4+ and CD8+ effector T cells and in Foxp3+ regulatory T cells. CD43 core-2 O-glycosylation depended on cell-intrinsic canonical Notch signals and identified CD4+ and CD8+ T cells with high cytokine-producing ability. Gcnt1-deficient T cells still drove lethal alloreactivity, showing that core-2 O-glycosylation predicted, but did not cause, Notch-dependent T cell pathogenicity. Using core-2 O-glycosylation as a marker of Notch signaling, we identified Ccl19-Cre+ fibroblastic stromal cells as critical sources of Delta-like ligands in graft-versus-host responses irrespective of conditioning intensity. Core-2 O-glycosylation also reported Notch signaling in CD8+ T cell responses to dendritic cell immunization, Listeria infection, and viral infection. Thus, we uncovered a role for Notch in controlling core-2 O-glycosylation and identified a cell surface marker to quantify Notch signals in multiple immunological contexts. Our findings will help refine our understanding of the regulation, cellular source, and timing of Notch signals in T cell immunity.


Bone Marrow Transplantation/adverse effects , CD8-Positive T-Lymphocytes/metabolism , Graft vs Host Disease/immunology , N-Acetylglucosaminyltransferases/metabolism , Receptors, Notch/metabolism , Animals , Biomarkers/metabolism , CD8-Positive T-Lymphocytes/immunology , Disease Models, Animal , Feasibility Studies , Female , Flow Cytometry/methods , Glycosylation/drug effects , Humans , Leukosialin/metabolism , Ligands , Lymphocyte Activation/drug effects , Male , Mice , Sensitivity and Specificity , Sialomucins/metabolism , Signal Transduction/drug effects , Signal Transduction/immunology , Stromal Cells/immunology , Stromal Cells/metabolism , Transplantation, Homologous/adverse effects , Up-Regulation
9.
Immunohorizons ; 4(1): 1-13, 2020 01 02.
Article En | MEDLINE | ID: mdl-31896555

CD4+ helper T cells play important roles in providing help to B cells, macrophages, and cytotoxic CD8+ T cells, but also exhibit direct effector functions against a variety of different pathogens. In contrast to CD8+ T cells, CD4+ T cells typically exhibit broader specificities and undergo less clonal expansion during many types of viral infections, which often makes the identification of virus-specific CD4+ T cells technically challenging. In this study, we have generated recombinant vaccinia virus (VacV) vectors that target I-Ab-restricted peptides for MHC class II (MHC-II) presentation to activate CD4+ T cells in mice. Conjugating the lymphocytic choriomeningitis virus immunodominant epitope GP61-80 to either LAMP1 to facilitate lysosomal targeting or to the MHC-II invariant chain (Ii) significantly increased the activation of Ag-specific CD4+ T cells in vivo. Immunization with VacV-Ii-GP61-80 activated endogenous Ag-specific CD4+ T cells that formed memory and rapidly re-expanded following heterologous challenge. Notably, immunization of mice with VacV expressing an MHC-II-restricted peptide from Leishmania species (PEPCK335-351) conjugated to either LAMP1 or Ii also generated Ag-specific memory CD4+ T cells that underwent robust secondary expansion following a visceral leishmaniasis infection, suggesting this approach could be used to generate Ag-specific memory CD4+ T cells against a variety of different pathogens. Overall, our data show that VacV vectors targeting peptides for MHC-II presentation is an effective strategy to activate Ag-specific CD4+ T cells in vivo and could be used to study Ag-specific effector and memory CD4+ T cell responses against a variety of viral, bacterial, or parasitic infections.


CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , Histocompatibility Antigens Class II/immunology , Vaccinia virus/immunology , Adaptive Immunity , Animals , Antigens , CD4-Positive T-Lymphocytes/virology , CD8-Positive T-Lymphocytes/virology , Epitopes, T-Lymphocyte , Immunodominant Epitopes , Mice , Mice, Inbred C57BL , Peptides
10.
Mol Immunol ; 117: 180-188, 2020 01.
Article En | MEDLINE | ID: mdl-31816491

IL-15 is a member of the common gamma chain family of cytokines and plays important roles in regulating several aspects of innate and adaptive immunity. Besides its established role in controlling homeostatic proliferation and survival of memory CD8+ T cells and natural killer cells, recent findings demonstrate that inflammatory IL-15 can also stimulate a variety of effector functions, such as enhanced cytotoxicity, entry into the cell cycle, and trafficking into non-lymphoid tissues. Here, we discuss how IL-15 is critical in regulating many functions of memory CD8+ T cells and how these processes act collectively to ensure optimal protective cellular immunity against re-infections.


CD8-Positive T-Lymphocytes/immunology , Immunologic Memory/immunology , Interleukin-15/immunology , Animals , Humans
11.
Cell Rep ; 29(10): 2990-2997.e2, 2019 12 03.
Article En | MEDLINE | ID: mdl-31801067

Tissue-resident memory (TRM) CD8+ T cells are positioned within environmental barrier tissues to provide a first line of defense against pathogen entry, but whether these specialized T cell populations can be readily boosted to increase protective immunity is ill defined. Here, we demonstrate that repeated activation of rare, endogenous TRM CD8+ T cells, using only topical application of antigenic peptide causes delayed-type hypersensitivity and increases the number of antigen-specific TRM CD8+ T cells, specifically in the challenged skin by ∼15-fold. Expanded TRM CD8+ T cells in the skin are derived from memory T cells recruited out of the circulation that became CD69+ tissue residents following a local antigen encounter. Notably, recruited circulating memory CD8+ T cells of a different antigen specificity could be coerced to become tissue resident using a dual-peptide challenge strategy. Expanded TRM CD8+ T cells significantly increase anti-viral protection, suggesting that this approach could be used to rapidly boost tissue-specific cellular immunity.


CD8-Positive T-Lymphocytes/immunology , Immunity, Cellular/immunology , Skin/immunology , Animals , Antigens, CD/immunology , Antigens, Differentiation, T-Lymphocyte/immunology , Immunologic Memory/immunology , Lectins, C-Type/immunology , Mice , Mice, Inbred C57BL
12.
PLoS Pathog ; 15(3): e1007633, 2019 03.
Article En | MEDLINE | ID: mdl-30875408

Memory CD8+ T cells in the circulation rapidly infiltrate non-lymphoid tissues following infection and provide protective immunity in an antigen-specific manner. However, the subsequent fate of memory CD8+ T cells after entering non-lymphoid tissues such as the skin during a secondary infection is largely unknown. Furthermore, because expression of CD62L is often used to identify the central memory (TCM) CD8+ T cell subset, uncoupling the physical requirement for CD62L-mediated lymph node homing versus other functional attributes of TCM CD8+ T cells remains unresolved. Here, we show that in contrast to naïve CD8+ T cells, memory CD8+ T cells traffic into the skin independent of CD62L-mediated lymph node re-activation and provide robust protective immunity against Vaccinia virus (VacV) infection. TCM, but not effector memory (TEM), CD8+ T cells differentiated into functional CD69+/CD103- tissue residents following viral clearance, which was also dependent on local recognition of antigen in the skin microenvironment. Finally, we found that memory CD8+ T cells expressed granzyme B after trafficking into the skin and utilized cytolysis to provide protective immunity against VacV infection. Collectively, these findings demonstrate that TCM CD8+ T cells become cytolytic following rapid infiltration of the skin to protect against viral infection and subsequently differentiate into functional CD69+ tissue-residents.


CD8-Positive T-Lymphocytes/metabolism , Immunologic Memory/physiology , Skin/immunology , Animals , Antigens, CD/metabolism , Antigens, CD/physiology , Antigens, Differentiation, T-Lymphocyte/metabolism , Antigens, Differentiation, T-Lymphocyte/physiology , CD8-Positive T-Lymphocytes/virology , Female , L-Selectin/metabolism , Lectins, C-Type/metabolism , Lectins, C-Type/physiology , Lymph Nodes , Male , Mice , Mice, Inbred C57BL , Skin/virology , T-Lymphocyte Subsets/metabolism , T-Lymphocyte Subsets/physiology , Vaccinia virus/immunology , Vaccinia virus/pathogenicity
13.
Curr Opin Virol ; 28: 12-19, 2018 02.
Article En | MEDLINE | ID: mdl-29080420

Epicutaneous delivery of vaccinia virus (VacV) by scarification of the skin generates robust and durable protective immunity, which was ultimately responsible for eradicating smallpox from the human race. Therefore, infection of the skin with VacV is often used in experimental model systems to study the activation of adaptive immunity, as well as the development and functional features of immunological memory. Here, we describe recent advances using this viral infection to identify and characterize the mechanisms regulating the activation and trafficking of cytotoxic CD8+ T cells into the inflamed skin, the migratory features of CD8+ T cells within the skin microenvironment, and finally, their subsequent differentiation into tissue-resident memory cells.


CD8-Positive T-Lymphocytes/immunology , Immunologic Memory , Skin/immunology , Skin/virology , Vaccinia virus/immunology , Adaptive Immunity , Administration, Cutaneous , Animals , Cell Differentiation , Cell Movement/immunology , Humans , Lymphocyte Activation , Mice , Skin/pathology
14.
Sci Immunol ; 2(16)2017 10 13.
Article En | MEDLINE | ID: mdl-29030501

Trafficking of memory CD8+ T cells out of the circulation is essential to provide protective immunity against intracellular pathogens in nonlymphoid tissues. However, the molecular mechanisms that dictate the trafficking potential of diverse memory CD8+ T cell populations are not completely defined. We show that after infection or inflammatory challenge, central memory (TCM) CD8+ T cells rapidly traffic into nonlymphoid tissues, whereas most effector memory cells remain in the circulation. Furthermore, we demonstrate that cellular migration of memory CD8+ T cells into nonlymphoid tissues is driven by interleukin-15 (IL-15)-stimulated enzymatic synthesis of core 2 O-glycans, which generates functional ligands for E- and P-selectins. Given that IL-15-stimulated expression of glycosyltransferase enzymes is largely a feature of TCM CD8+ T cells, this allows TCM to selectively migrate out of the circulation and into nonlymphoid tissues. Collectively, our data indicate that entry of memory CD8+ T cells into inflamed, nonlymphoid tissues is primarily restricted to TCM cells that have the capacity to synthesize core 2 O-glycans.


CD8-Positive T-Lymphocytes/immunology , Immunologic Memory , Polysaccharides/immunology , Animals , CD8-Positive T-Lymphocytes/enzymology , Cell Movement , Cytoplasm/immunology , Cytoplasm/virology , Inflammation , Interleukin-15/genetics , Interleukin-15/immunology , Lymphocytic choriomeningitis virus/immunology , Mice , Polysaccharides/biosynthesis
15.
Cell Rep ; 20(13): 3176-3187, 2017 Sep 26.
Article En | MEDLINE | ID: mdl-28954233

Lymphatic vessels lie at the interface between peripheral sites of pathogen entry, adaptive immunity, and the systemic host. Though the paradigm is that their open structure allows for passive flow of infectious particles from peripheral tissues to lymphoid organs, virus applied to skin by scarification does not spread to draining lymph nodes. Using cutaneous infection by scarification, we analyzed the effect of viral infection on lymphatic transport and evaluated its role at the host-pathogen interface. We found that, in the absence of lymphatic vessels, canonical lymph-node-dependent immune induction was impaired, resulting in exacerbated pathology and compensatory, systemic priming. Furthermore, lymphatic vessels decouple fluid and cellular transport in an interferon-dependent manner, leading to viral sequestration while maintaining dendritic cell transport for immune induction. In conclusion, we found that lymphatic vessels balance immune activation and viral dissemination and act as an "innate-like" component of tissue host viral defense.


Lymphatic System/virology , Lymphatic Vessels/virology , Animals , Humans , Lymph Nodes/immunology , Mice , Virus Diseases
16.
Front Immunol ; 8: 600, 2017.
Article En | MEDLINE | ID: mdl-28596771

Selectins constitute a family of oligosaccharide binding proteins that play critical roles in regulating the trafficking of leukocytes. In T cells, L-selectin (CD62L) controls the capacity for naive and memory T cells to actively survey peripheral lymph nodes, whereas P- and E-selectin capture activated T cells on inflamed vascular endothelium to initiate extravasation into non-lymphoid tissues. The capacity for T cells to interact with all of these selectins is dependent on the enzymatic synthesis of complex O-glycans, and thus, this protein modification plays an indispensable role in regulating the distribution and homing of both naive and previously activated T cells in vivo. In contrast to neutrophils, O-glycan synthesis is highly dynamic in T cell populations and is largely controlled by extracellular stimuli such as antigen recognition or signaling though cytokine receptors. Herein, we review the basic principles of enzymatic synthesis of complex O-glycans, discuss tools and reagents for studying this type of protein modification and highlight our current understanding of how O-glycan synthesis is regulated and subsequently impacts the trafficking potential of diverse T cell populations.

17.
J Exp Med ; 213(6): 951-66, 2016 05 30.
Article En | MEDLINE | ID: mdl-27217536

Tissue-resident memory (Trm) CD8(+) T cells are functionally distinct from their circulating counterparts and are potent mediators of host protection against reinfection. Whether local recognition of antigen in nonlymphoid tissues during infection can impact the formation of Trm populations remains unresolved. Using skin infections with vaccinia virus (VacV)-expressing model antigens, we found that local antigen recognition had a profound impact on Trm formation. Activated CD8(+) T cells trafficked to VacV-infected skin in an inflammation-dependent, but antigen-independent, manner. However, after viral clearance, there was a subsequent ∼50-fold increase in Trm formation when antigen was present in the tissue microenvironment. Secondary antigen stimulation in nonlymphoid tissue caused CD8(+) T cells to rapidly express CD69 and be retained at the site of infection. Finally, Trm CD8(+) T cells that formed during VacV infection in an antigen-dependent manner became potent stimulators of localized antigen-specific inflammatory responses in the skin. Thus, our studies indicate that the presence of antigen in the nonlymphoid tissue microenvironment plays a critical role in the formation of functional Trm CD8(+) T cell populations, a finding with relevance for both vaccine design and prevention of inflammatory disorders.


Antigens, Viral/immunology , CD8-Positive T-Lymphocytes/immunology , Immunologic Memory , Models, Immunological , Vaccinia virus/immunology , Vaccinia/immunology , Animals , Antigens, CD/genetics , Antigens, CD/immunology , Antigens, Differentiation, T-Lymphocyte/genetics , Antigens, Differentiation, T-Lymphocyte/immunology , Antigens, Viral/genetics , CD8-Positive T-Lymphocytes/pathology , Lectins, C-Type/genetics , Lectins, C-Type/immunology , Mice , Mice, Transgenic , Skin/immunology , Skin/pathology , Vaccinia/genetics , Vaccinia/pathology , Vaccinia virus/genetics
18.
Immunity ; 44(2): 207-8, 2016 Feb 16.
Article En | MEDLINE | ID: mdl-26885849

Cytotoxic CD8+ T lymphocytes (CTLs) have long been believed to be extremely efficient killers. Forster and colleagues (Halle et al., 2016) used in vivo imaging to tell a different story, in which each CTL killed only 2-16 targets a day, and several CTLs per target were needed to get the job done.


Herpesviridae Infections/immunology , Muromegalovirus/immunology , Perforin/metabolism , T-Lymphocyte Subsets/immunology , T-Lymphocytes, Cytotoxic/immunology , Vaccinia virus/immunology , Vaccinia/immunology , Animals , Humans
19.
Cell Mol Life Sci ; 72(13): 2461-73, 2015 Jul.
Article En | MEDLINE | ID: mdl-25577280

Cytotoxic CD8(+) T cells are potent mediators of host protection against disease due to their ability to directly kill cells infected with intracellular pathogens and produce inflammatory cytokines at the site of infection. To fully achieve this objective, naïve CD8(+) T cells must be able to survey the entire body for the presence of foreign or "non-self" antigen that is delivered to draining lymph nodes following infection or tissue injury. Once activated, CD8(+) T cells undergo many rounds of cell division, acquire effector functions, and are no longer restricted to the circulation and lymphoid compartments like their naïve counterparts, but rather are drawn to inflamed tissues to combat infection. As CD8(+) T cells transition from naïve to effector to memory populations, this is accompanied by dynamic changes in the expression of adhesion molecules and chemokine receptors that ultimately dictate their localization in vivo. Thus, an understanding of the molecular mechanisms regulating CD8(+) T cell trafficking and localization is critical for vaccine design, control of infectious diseases, treatment of autoimmune disorders, and cancer immunotherapy.


CD8-Positive T-Lymphocytes/immunology , Cell Movement/immunology , Gene Expression Regulation/immunology , Immunotherapy/methods , Lymphocyte Activation/immunology , Models, Immunological , Signal Transduction/immunology , T-Lymphocytes, Cytotoxic/immunology , Humans , Lymph Nodes/immunology , Receptors, Cytokine/metabolism
20.
J Clin Invest ; 124(3): 1013-26, 2014 Mar.
Article En | MEDLINE | ID: mdl-24509081

Memory and naive CD8+ T cells exhibit distinct trafficking patterns. Specifically, memory but not naive CD8+ T cells are recruited to inflamed tissues in an antigen-independent manner. However, the molecular mechanisms that regulate memory CD8+ T cell trafficking are largely unknown. Here, using murine models of infection and T cell transfer, we found that memory but not naive CD8+ T cells dynamically regulate expression of core 2 O-glycans, which interact with P- and E-selectins to modulate trafficking to inflamed tissues. Following infection, antigen-specific effector CD8+ T cells strongly expressed core 2 O-glycans, but this glycosylation pattern was lost by most memory CD8+ T cells. After unrelated infection or inflammatory challenge, memory CD8+ T cells synthesized core 2 O-glycans independently of antigen restimulation. The presence of core 2 O-glycans subsequently directed these cells to inflamed tissue. Memory and naive CD8+ T cells exhibited the opposite pattern of epigenetic modifications at the Gcnt1 locus, which encodes the enzyme that initiates core 2 O-glycan synthesis. The open chromatin configuration in memory CD8+ T cells permitted de novo generation of core 2 O-glycans in a TCR-independent, but IL-15-dependent, manner. Thus, IL-15 stimulation promotes antigen-experienced memory CD8+ T cells to generate core 2 O-glycans, which subsequently localize them to inflamed tissues. These findings suggest that CD8+ memory T cell trafficking potentially can be manipulated to improve host defense and immunotherapy.


CD8-Positive T-Lymphocytes/metabolism , Cell Movement , Interleukin-15/physiology , Polysaccharides/biosynthesis , Animals , CD8-Positive T-Lymphocytes/immunology , E-Selectin/metabolism , Glycosylation , Immunologic Memory , Inflammation , Lipopolysaccharides/pharmacology , Lung/immunology , Lung/virology , Mice , Mice, Inbred C57BL , N-Acetylglucosaminyltransferases/genetics , N-Acetylglucosaminyltransferases/metabolism , P-Selectin/metabolism , Protein Processing, Post-Translational , Respiratory Syncytial Viruses/immunology , Respiratory Tract Infections/immunology , Respiratory Tract Infections/virology , Skin/immunology , Skin/virology , Toll-Like Receptors/agonists , Toll-Like Receptors/metabolism , Vaccinia virus/immunology
...