Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Virol ; 98(3): e0199523, 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38323813

RESUMEN

Historically, antibody reactivity to pathogens and vaccine antigens has been evaluated using serological measurements of antigen-specific antibodies. However, it is difficult to evaluate all antibodies that contribute to various functions in a single assay, such as the measurement of the neutralizing antibody titer. Bulk antibody repertoire analysis using next-generation sequencing is a comprehensive method for analyzing the overall antibody response; however, it is unreliable for estimating antigen-specific antibodies due to individual variation. To address this issue, we propose a method to subtract the background signal from the repertoire of data of interest. In this study, we analyzed changes in antibody diversity and inferred the heavy-chain complementarity-determining region 3 (CDRH3) sequences of antibody clones that were selected upon influenza virus infection in a mouse model using bulk repertoire analysis. A decrease in the diversity of the antibody repertoire was observed upon viral infection, along with an increase in neutralizing antibody titers. Using kernel density estimation of sequences in a high-dimensional sequence space with background signal subtraction, we identified several clusters of CDRH3 sequences induced upon influenza virus infection. Most of these repertoires were detected more frequently in infected mice than in uninfected control mice, suggesting that infection-specific antibody sequences can be extracted using this method. Such an accurate extraction of antigen- or infection-specific repertoire information will be a useful tool for vaccine evaluation in the future. IMPORTANCE: As specific interactions between antigens and cell-surface antibodies trigger the proliferation of B-cell clones, the frequency of each antibody sequence in the samples reflects the size of each clonal population. Nevertheless, it is extremely difficult to extract antigen-specific antibody sequences from the comprehensive bulk antibody sequences obtained from blood samples due to repertoire bias influenced by exposure to dietary antigens and other infectious agents. This issue can be addressed by subtracting the background noise from the post-immunization or post-infection repertoire data. In the present study, we propose a method to quantify repertoire data from comprehensive repertoire data. This method allowed subtraction of the background repertoire, resulting in more accurate extraction of expanded antibody repertoires upon influenza virus infection. This accurate extraction of antigen- or infection-specific repertoire information is a useful tool for vaccine evaluation.


Asunto(s)
Anticuerpos Antivirales , Infecciones por Orthomyxoviridae , Orthomyxoviridae , Animales , Ratones , Anticuerpos Neutralizantes/sangre , Anticuerpos Neutralizantes/química , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/sangre , Anticuerpos Antivirales/química , Anticuerpos Antivirales/inmunología , Linfocitos B/citología , Linfocitos B/inmunología , Células Clonales/citología , Células Clonales/inmunología , Regiones Determinantes de Complementariedad/inmunología , Vacunas contra la Influenza/inmunología , Orthomyxoviridae/inmunología , Infecciones por Orthomyxoviridae/sangre , Infecciones por Orthomyxoviridae/inmunología , Infecciones por Orthomyxoviridae/virología
2.
Sci Rep ; 14(1): 4204, 2024 02 20.
Artículo en Inglés | MEDLINE | ID: mdl-38378856

RESUMEN

Due to the synchronous circulation of seasonal influenza viruses and severe acute respiratory coronavirus 2 (SARS-CoV-2) which causes coronavirus disease 2019 (COVID-19), there is need for routine vaccination for both COVID-19 and influenza to reduce disease severity. Here, we prepared individual WPVs composed of formalin-inactivated SARS-CoV-2 WK 521 (Ancestral strain; Co WPV) or influenza virus [A/California/07/2009 (X-179A) (H1N1) pdm; Flu WPV] to produce a two-in-one Co/Flu WPV. Serum analysis from vaccinated mice revealed that a single dose of Co/Flu WPV induced antigen-specific neutralizing antibodies against both viruses, similar to those induced by either type of WPV alone. Following infection with either virus, mice vaccinated with Co/Flu WPV showed no weight loss, reduced pneumonia and viral titers in the lung, and lower gene expression of proinflammatory cytokines, as observed with individual WPV-vaccinated. Furthermore, a pentavalent vaccine (Co/qFlu WPV) comprising of Co WPV and quadrivalent influenza vaccine (qFlu WPV) was immunogenic and protected animals from severe COVID-19. These results suggest that a single dose of the two-in-one WPV provides efficient protection against SARS-CoV-2 and influenza virus infections with no evidence of vaccine interference in mice. We propose that concomitant vaccination with the two-in-one WPV can be useful for controlling both diseases.


Asunto(s)
COVID-19 , Subtipo H1N1 del Virus de la Influenza A , Vacunas contra la Influenza , Gripe Humana , Animales , Ratones , Humanos , Vacunas contra la COVID-19 , Anticuerpos Antivirales , COVID-19/prevención & control , SARS-CoV-2 , Vacunación/métodos , Virión , Inmunogenicidad Vacunal
3.
Sci Rep ; 13(1): 14210, 2023 08 30.
Artículo en Inglés | MEDLINE | ID: mdl-37648726

RESUMEN

Although influenza virus infection has been shown to affect lipid metabolism, details remain unknown. Therefore, we elucidated the kinetic lipid profiles of mice infected with different doses of influenza virus A/Puerto Rico/8/34 (H1N1) (PR8) by measuring multiple lipid molecular species using untargeted lipidomic analysis. C57BL/6 male mice were intranasally infected with PR8 virus at 50 or 500 plaque-forming units to cause sublethal or lethal influenza, respectively. Plasma and tissue samples were collected at 1, 3, and 6 days post-infection (dpi), and comprehensive lipidomic analysis was performed using high-performance liquid chromatography-linear trap quadrupole-Orbitrap mass spectrometry, as well as gene expression analyses. The most prominent feature of the lipid profile in lethally infected mice was the elevated plasma concentrations of phosphatidylethanolamines (PEs) containing polyunsaturated fatty acid (PUFA) at 3 dpi. Furthermore, the facilitation of PUFA-containing phospholipid production in the lungs, but not in the liver, was suggested by gene expression and lipidomic analysis of tissue samples. Given the increased plasma or serum levels of PUFA-containing PEs in patients with other viral infections, especially in severe cases, the elevation of these phospholipids in circulation could be a biomarker of infection and the severity of infectious diseases.


Asunto(s)
Subtipo H1N1 del Virus de la Influenza A , Gripe Humana , Masculino , Animales , Ratones , Humanos , Ratones Endogámicos C57BL , Lipidómica , Modelos Animales de Enfermedad , Lípidos
4.
Found Sci ; : 1-18, 2023 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-37359083

RESUMEN

Space and time, which should properly be taken conjointly, are both communicatively produced and created with certain contextual perspectives-they are not independent physical entities. The standpoint of production makes the relationship between space and time comprehensible. They can either be mental-subjective, physical-objective, or social-intersubjective. Social and intersubjective (or E-series) spacetime might shed new light on biological thinking. For general readers, this paper provides a clue regarding an alternative conceptualization of spacetime based on biology.

5.
Vaccine ; 41(3): 787-794, 2023 01 16.
Artículo en Inglés | MEDLINE | ID: mdl-36526501

RESUMEN

Among inactivated influenza vaccines, the whole virus particle vaccine (WPV) elicits superior priming responses to split virus vaccine (SV) in efficiently inducing humoral and cellular immunity. However, there is concern for undesired adverse events such as fever for WPV due to its potent immunogenicity. Therefore, this study investigated the febrile response induced by subcutaneous injection with quadrivalent inactivated influenza vaccines of good manufacturing grade for pharmaceutical or investigational products in cynomolgus macaques. Body temperature was increased by 1 °C-2 °C for 6-12 h after WPV administration at the first vaccination but not at the second shot, whereas SV did not affect body temperature at both points. Given the potent priming ability of WPV, WPV-induced fever may be attributed to immune responses that uniquely occur during priming. Since WPV-induced fever was blunted by pretreatment with indomethacin (a cyclooxygenase inhibitor), the febrile response by WPV is considered to depend on the increase in prostaglandins synthesized by cyclooxygenase. In addition, WPV, but not SV, induced the elevation of type I interferons and monocyte chemotactic protein 1 in the plasma; these factors may be responsible for pyrogenicity caused by WPV, as they can increase prostaglandins in the brain. Notably, sufficient antibody responses were acquired by half the amount of WPV without causing fever, suggesting that excessive immune responses to trigger the febrile response is not required for acquired immunity induction. Thus, we propose that WPV with a reduced antigen dose should be evaluated for potential clinical usage, especially in naïve populations.


Asunto(s)
Vacunas contra la Influenza , Gripe Humana , Orthomyxoviridae , Animales , Humanos , Gripe Humana/prevención & control , Macaca fascicularis , Fiebre/inducido químicamente , Vacunas de Productos Inactivados , Prostaglandinas , Anticuerpos Antivirales
6.
PLoS Pathog ; 18(10): e1010891, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36206307

RESUMEN

Although antibody-inducing split virus vaccines (SV) are currently the most effective way to combat seasonal influenza, their efficacy can be modest, especially in immunologically-naïve individuals. We investigated immune responses towards inactivated whole influenza virus particle vaccine (WPV) formulations, predicated to be more immunogenic, in a non-human primate model, as an important step towards clinical testing in humans. Comprehensive analyses were used to capture 46 immune parameters to profile how WPV-induced responses differed to those elicited by antigenically-similar SV formulations. Naïve cynomolgus macaques vaccinated with either monovalent or quadrivalent WPV consistently induced stronger antibody responses and hemagglutination inhibition (HI) antibody titres against vaccine-matched viruses compared to SV formulations, while acute reactogenic effects were similar. Responses in WPV-primed animals were further increased by boosting with the same formulation, conversely to modest responses after priming and boosting with SV. 28-parameter multiplex bead array defined key antibody features and showed that while both WPV and SV induced elevated IgG responses against A/H1N1 nucleoprotein, only WPV increased IgG responses against A/H1N1 hemagglutinin (HA) and HA-Stem, and higher IgA responses to A/H1N1-HA after each vaccine dose. Antibodies to A/H1N1-HA and HA-Stem that could engage FcγR2a and FcγR3a were also present at higher levels after one dose of WPV compared to SV and remained elevated after the second dose. Furthermore, WPV-enhanced antibody responses were associated with higher frequencies of HA-specific B-cells and IFN-γ-producing CD4+ T-cell responses. Our data additionally demonstrate stronger boosting of HI titres by WPV following prior infection and support WPV administered as a priming dose irrespective of the follow up vaccine for the second dose. Our findings thus show that compared to SV vaccination, WPV-induced humoral responses are significantly increased in scope and magnitude, advocating WPV vaccination regimens for priming immunologically-naïve individuals and also in the event of a pandemic outbreak.


Asunto(s)
Subtipo H1N1 del Virus de la Influenza A , Vacunas contra la Influenza , Gripe Humana , Animales , Humanos , Hemaglutininas , Anticuerpos Antivirales , Vacunación , Pruebas de Inhibición de Hemaglutinación , Vacunas de Productos Inactivados , Macaca fascicularis , Virión , Inmunoglobulina A , Inmunoglobulina G , Nucleoproteínas
7.
Arch Psychiatr Nurs ; 39: 46-53, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35688543

RESUMEN

This paper describes preliminary research from Japan on developing a new tool for psychiatric nurses, the patient-authored medical record, a "prescription" written in ordinary language by the patient with the assistance of a nurse. The nurse asks the patient how to improve their illness and she types up the patient's story on site in the form of a first-person narrative. The patient checks it for accuracy before taking a copy home. Ten Japanese patients participated in this field-oriented ethnographic study, and the analysis of the qualitative data strongly suggested that the approach had therapeutic effects on each patient. This narrative-based prescription could be used as a tool, specifically by psychiatric nurses, in many cultures, and it is our hope that it contributes to their professional identity.


Asunto(s)
Enfermería Psiquiátrica , Antropología Cultural , Femenino , Humanos , Registros Médicos , Narración , Relaciones Enfermero-Paciente
8.
Vaccine ; 40(30): 4026-4037, 2022 06 26.
Artículo en Inglés | MEDLINE | ID: mdl-35641357

RESUMEN

The All-Japan Influenza Vaccine Study Group has been developing a more effective vaccine than the current split vaccines for seasonal influenza virus infection. In the present study, the efficacy of formalin- and/or ß-propiolactone-inactivated whole virus particle vaccines for seasonal influenza was compared to that of the current ether-treated split vaccines in a nonhuman primate model. The monovalent whole virus particle vaccines or split vaccines of influenza A virus (H1N1) and influenza B virus (Victoria lineage) were injected subcutaneously into naïve cynomolgus macaques twice. The whole virus particle vaccines induced higher titers of neutralizing antibodies against H1N1 influenza A virus and influenza B virus in the plasma of macaques than did the split vaccines. At challenge with H1N1 influenza A virus or influenza B virus, the virus titers in nasal swabs and the increases in body temperatures were lower in the macaques immunized with the whole virus particle vaccine than in those immunized with the split vaccine. Repertoire analyses of immunoglobulin heavy chain genes demonstrated that the number of B-lymphocyte subclones was increased in macaques after the 1st vaccination with the whole virus particle vaccine, but not with the split vaccine, indicating that the whole virus particle vaccine induced the activation of vaccine antigen-specific B-lymphocytes more vigorously than did the split vaccine at priming. Thus, the present findings suggest that the superior antibody induction ability of the whole virus particle vaccine as compared to the split vaccine is attributable to its stimulatory properties on the subclonal differentiation of antigen-specific B-lymphocytes.


Asunto(s)
Subtipo H1N1 del Virus de la Influenza A , Vacunas contra la Influenza , Gripe Humana , Infecciones por Orthomyxoviridae , Animales , Anticuerpos Neutralizantes , Anticuerpos Antivirales , Linfocitos B , Genes de Inmunoglobulinas , Humanos , Gripe Humana/prevención & control , Macaca fascicularis , Vacunación , Vacunas de Productos Inactivados , Virión
9.
Biochem Biophys Res Commun ; 614: 207-212, 2022 07 23.
Artículo en Inglés | MEDLINE | ID: mdl-35617879

RESUMEN

Simple, highly sensitive detection technologies for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are crucial for the effective implementation of public health policies. We used the systematic evolution of ligands by exponential enrichment with a modified DNA library, including a base-appended base (uracil with a guanine base at its fifth position), to create an aptamer with a high affinity for the receptor-binding domain (RBD) of the SARS-CoV-2 spike glycoprotein. The aptamer had a dissociation constant of 1.2 and < 1 nM for the RBD and spike trimer, respectively. Furthermore, enzyme-linked aptamer assays confirmed that the aptamer binds to isolated authentic SARS-CoV-2 wild-type and B.1.617.2 (delta variant). The binding signal was larger that of commercially available anti-SARS-CoV-2 RBD antibody. Thus, this aptamer as a sensing element will enable the highly sensitive detection of SARS-CoV-2.


Asunto(s)
COVID-19 , SARS-CoV-2 , Anticuerpos Antivirales , ADN/metabolismo , Humanos , Oligonucleótidos/metabolismo , Unión Proteica , SARS-CoV-2/genética , Glicoproteína de la Espiga del Coronavirus
10.
Vaccines (Basel) ; 10(5)2022 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-35632561

RESUMEN

Despite the use of vaccines, seasonal influenza remains a risk to public health. We previously proposed the inactivated whole virus particle vaccine (WPV) as an alternative to the widely used split vaccine (SV) for the control of seasonal and pandemic influenza based on the superior priming potency of WPV to that of SV. In this study, we further examined and compared the immunological potency of monovalent WPV and SV of A/California/7/2009 (X-179A) (H1N1) pdm09 (CA/09) to generate immune responses against heterologous viruses, A/Singapore/GP1908/2015 (IVR-180) (H1N1) pdm09 (SG/15), and A/duck/Hokkaido/Vac-3/2007 (H5N1) (DH/07) in mice. Following challenge with a lethal dose of heterologous SG/15, lower virus titer in the lungs and milder weight loss were observed in WPV-vaccinated mice than in SV-vaccinated ones. To investigate the factors responsible for the differences in the protective effect against SG/15, the sera of vaccinated mice were analyzed by hemagglutination-inhibition (HI) and neuraminidase-inhibition (NI) assays to evaluate the antibodies induced against viral hemagglutinin (HA) and neuraminidase (NA), respectively. While the two vaccines induced similar levels of HI antibodies against SG/15 after the second vaccination, only WPV-vaccinated mice induced significantly higher titers of NI antibodies against the strain. Furthermore, given the significant elevation of NI antibody titers against DH/07, an H5N1 avian influenza virus, WPV was also demonstrated to induce NA-inhibiting antibodies that recognize NA of divergent strains. This could be explained by the higher conservation of epitopes of NA among strains than for HA. Taking these findings together, NA-specific antibodies induced by WPV may have contributed to better protection from infection with heterologous influenza virus SG/15, compared with SV. The present results indicate that WPV is an effective vaccine for inducing antibodies against both HA and NA of heterologous viruses and may be a useful vaccine to conquer vaccine strain mismatch.

11.
Microbiol Spectr ; 10(2): e0215721, 2022 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-35289672

RESUMEN

Leptospirosis is a zoonotic disease caused by infection with pathogenic leptospires. Consistent with recent studies by other groups, leptospires were isolated from 89 out of 110 (80.9%) soil or water samples from varied locations in the Philippines in our surveillance study, indicating that leptospires might have a life cycle that does not involve animal hosts. However, despite previous work, it has not been confirmed whether leptospires multiply in the soil environment under various experimental conditions. Given the fact that the case number of leptospirosis is increased after flood, we hypothesized that waterlogged soil, which mimics the postflooding environment, could be a suitable condition for growing leptospires. To verify this hypothesis, pathogenic and saprophytic leptospires were seeded in the bottles containing 2.5 times as much water as soil, and bacterial counts in the bottles were measured over time. Pathogenic and saprophytic leptospires were found to increase their number in waterlogged soil but not in water or soil alone. In addition, leptospires were reisolated from soil in closed tubes for as long as 379 days. These results indicate that leptospires are in a resting state in the soil and are able to proliferate with increased water content in the environment. This notion is strongly supported by observations that the case number of leptospirosis is significantly higher in rainy seasons and increased after flood. Therefore, we reached the following conclusion: environmental soil is a potential reservoir of leptospires. IMPORTANCE Since research on Leptospira has focused on pathogenic leptospires, which are supposed to multiply only in animal hosts, the life cycle of saprophytic leptospires has long been a mystery. This study demonstrates that both pathogenic and saprophytic leptospires multiply in the waterlogged soil, which mimics the postflooding environment. The present results potentially explain why leptospirosis frequently occurs after floods. Therefore, environmental soil is a potential reservoir of leptospires and leptospirosis is considered an environment-borne as well as a zoonotic disease. This is a significant report to reveal that leptospires multiply under environmental conditions, and this finding leads us to reconsider the ecology of leptospires.


Asunto(s)
Leptospira , Leptospirosis , Animales , Leptospirosis/epidemiología , Leptospirosis/veterinaria , Suelo , Agua , Zoonosis/epidemiología , Zoonosis/microbiología
12.
J Radiol Prot ; 41(4)2021 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-34816800

RESUMEN

Following the Fukushima Daiichi Nuclear Power Plant accident in 2011, many radiation experts directly experienced a vast gap between ideal and real public understanding (PU) of radiation in risk communication. Therefore, this study collated and reviewed information about PU activities for radiation and its risk that six Japanese academic societies-which seem to be socially neutral expert communities-related to radiation and radiation risk conducted before and after the accident. Activities these radiation-related societies provided to the general public were discussed from the following perspectives: (a) difficulties in two-way communication due to resources, motivation and public interest and concerns; (b) balance between academic research and PU activities; (c) academic societies' building trust with the public while ensuring member experts' neutrality and independence; and (d) discussions among academic societies to prepare for public engagement. We hope that this paper encourages experts and academic societies in radiation protection to hold more national and international discussions about their roles in public communication and outreach.


Asunto(s)
Accidente Nuclear de Fukushima , Protección Radiológica , Comunicación , Japón , Plantas de Energía Nuclear
13.
Sci Rep ; 11(1): 15675, 2021 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-34344944

RESUMEN

Although coagulation abnormalities, including microvascular thrombosis, are thought to contribute to tissue injury and single- or multiple-organ dysfunction in severe influenza, the detailed mechanisms have yet been clarified. This study evaluated influenza-associated abnormal blood coagulation utilizing a severe influenza mouse model. After infecting C57BL/6 male mice with intranasal applications of 500 plaque-forming units of influenza virus A/Puerto Rico/8/34 (H1N1; PR8), an elevated serum level of prothrombin fragment 1 + 2, an indicator for activated thrombin generation, was observed. Also, an increased gene expression of oxidized low-density lipoprotein (LDL) receptor-1 (Olr1), a key molecule in endothelial dysfunction in the progression of atherosclerosis, was detected in the aorta of infected mice. Body weight decrease, serum levels of cytokines and chemokines, viral load, and inflammation in the lungs of infected animals were similar between wild-type and Olr1 knockout (KO) mice. In contrast, the elevation of prothrombin fragment 1 + 2 levels in the sera and intravascular thrombosis in the lungs by PR8 virus infection were not induced in KO mice. Collectively, the results indicated that OLR1 is a critical host factor in intravascular thrombosis as a pathogeny of severe influenza. Thus, OLR1 is a promising novel therapeutic target for thrombosis during severe influenza.


Asunto(s)
Biomarcadores , Susceptibilidad a Enfermedades , Infecciones por Orthomyxoviridae/complicaciones , Receptores Depuradores de Clase E/metabolismo , Trombosis/etiología , Trombosis/metabolismo , Animales , Coagulación Sanguínea , Citocinas/sangre , Modelos Animales de Enfermedad , Ratones , Ratones Noqueados , Infecciones por Orthomyxoviridae/diagnóstico , Infecciones por Orthomyxoviridae/virología , Tiempo de Tromboplastina Parcial , Receptores Depuradores de Clase E/genética , Índice de Severidad de la Enfermedad , Trombina/biosíntesis , Trombosis/diagnóstico , Carga Viral
14.
Viruses ; 13(6)2021 05 24.
Artículo en Inglés | MEDLINE | ID: mdl-34073843

RESUMEN

Despite seasonal influenza vaccines having been routinely used for many decades, influenza A virus continues to pose a global threat to humans, causing high morbidity and mortality each year. The effectiveness of the vaccine is largely dependent on how well matched the vaccine strains are with the circulating influenza virus strains. Furthermore, low vaccine efficacy in naïve populations such as young children, or in the elderly, who possess weakened immune systems, indicates that influenza vaccines need to be more personalized to provide broader community protection. Advances in both vaccine technologies and our understanding of influenza virus infection and immunity have led to the design of a variety of alternate vaccine strategies to extend population protection against influenza, some of which are now in use. In this review, we summarize the progress in the field of influenza vaccines, including the advantages and disadvantages of different strategies, and discuss future prospects. We also highlight some of the challenges to be faced in the ongoing effort to control influenza through vaccination.


Asunto(s)
Virus de la Influenza A/inmunología , Vacunas contra la Influenza/inmunología , Gripe Humana/prevención & control , Medicina de Precisión , Adyuvantes Inmunológicos , Toma de Decisiones Clínicas , Manejo de la Enfermedad , Humanos , Vacunas contra la Influenza/administración & dosificación , Vacunas contra la Influenza/efectos adversos , Vacunas contra la Influenza/clasificación , Gripe Humana/epidemiología , Medicina de Precisión/métodos , Vigilancia en Salud Pública , Investigación , Vacunación
15.
Vaccine ; 39(29): 3940-3951, 2021 06 29.
Artículo en Inglés | MEDLINE | ID: mdl-34090697

RESUMEN

Current detergent or ether-disrupted split vaccines (SVs) for influenza do not always induce adequate immune responses, especially in young children. This contrasts with the whole virus particle vaccines (WPVs) originally used against influenza that were immunogenic in both adults and children but were replaced by SV in the 1970s due to concerns with reactogenicity. In this study, we re-evaluated the immunogenicity of WPV and SV, prepared from the same batch of purified influenza virus, in cynomolgus macaques and confirmed that WPV is superior to SV in priming potency. In addition, we compared the ability of WPV and SV to induce innate immune responses, including the maturation of dendritic cells (DCs) in vitro. WPV stimulated greater production of inflammatory cytokines and type-I interferon in immune cells from mice and macaques compared to SV. Since these innate responses are likely triggered by the activation of pattern recognition receptors (PRRs) by viral RNA, the quantity and quality of viral RNA in each vaccine were assessed. Although the quantity of viral RNA was similar in the two vaccines, the amount of viral RNA of a length that can be recognized by PRRs was over 100-fold greater in WPV than in SV. More importantly, 1000-fold more viral RNA was delivered to DCs by WPV than by SV when exposed to preparations containing the same amount of HA protein. Furthermore, WPV induced up-regulation of the DC maturation marker CD86 on murine DCs, while SV did not. The present results suggest that the activation of antigen-presenting DCs, by PRR-recognizable viral RNA contained in WPV is responsible for the effective priming potency of WPV observed in naïve mice and macaques. WPV is thus recommended as an alternative option for seasonal influenza vaccines, especially for children.


Asunto(s)
Vacunas contra la Influenza , Infecciones por Orthomyxoviridae , Orthomyxoviridae , Animales , Anticuerpos Antivirales , Células Presentadoras de Antígenos , Ratones , Infecciones por Orthomyxoviridae/prevención & control , ARN Viral , Vacunas de Productos Inactivados , Virión
16.
Virology ; 557: 55-61, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33667751

RESUMEN

Genetic reassortment of influenza A viruses through cross-species transmission contributes to the generation of pandemic influenza viruses. To provide information on the ecology of influenza viruses, we have been conducting a global surveillance of zoonotic influenza and establishing an influenza virus library. Of 4580 influenza virus strains in the library, 3891 have been isolated from over 70 different bird species. The remaining 689 strains were isolated from humans, pigs, horses, seal, whale, and the environment. Phylogenetic analyses of the HA genes of the library isolates demonstrate that the library strains are distributed to all major known clusters of the H1, H2 and H3 subtypes of HA genes that are prevalent in humans. Since past pandemic influenza viruses are most likely genetic reassortants of zoonotic and seasonal influenza viruses, a vast collection of influenza A virus strains from various hosts should be useful for vaccine preparation and diagnosis for future pandemics.


Asunto(s)
Biblioteca de Genes , Vacunas contra la Influenza/inmunología , Gripe Humana/diagnóstico , Infecciones por Orthomyxoviridae/veterinaria , Infecciones por Orthomyxoviridae/virología , Orthomyxoviridae/genética , Pandemias/prevención & control , Universidades , Animales , Lobos Marinos/virología , Caballos/virología , Humanos , Gripe Humana/virología , Orthomyxoviridae/aislamiento & purificación , Filogenia , Virus Reordenados , Porcinos/virología
17.
Immunol Cell Biol ; 99(1): 97-106, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32741011

RESUMEN

Influenza remains a significant global public health burden, despite substantial annual vaccination efforts against circulating virus strains. As a result, novel vaccine approaches are needed to generate long-lasting and universal broadly cross-reactive immunity against distinct influenza virus strains and subtypes. Several new vaccine candidates are currently under development and/or in clinical trials. The successful development of new vaccines requires testing in animal models, other than mice, which capture the complexity of the human immune system. Importantly, following vaccination or challenge, the assessment of adaptive immunity at the antigen-specific level is particularly informative. In this study, using peripheral blood mononuclear cells (PBMCs) from cynomolgus macaques, we describe detection methods and in-depth analyses of influenza virus-specific B cells by recombinant hemagglutinin probes and flow cytometry, as well as the detection of influenza virus-specific CD8+ and CD4+ T cells by stimulation with live influenza A virus and intracellular cytokine staining. We highlight the potential of these assays to be used with PBMCs from other macaque species, including rhesus macaques, pigtail macaques and African green monkeys. We also demonstrate the use of a human cytometric bead array kit in detecting inflammatory cytokines and chemokines from cynomolgus macaques to assess cytokine/chemokine milieu. Overall, the detection of influenza virus-specific B and T cells, together with inflammatory responses, as described in our study, provides useful insights for evaluating novel influenza vaccines. Our data deciphering immune responses toward influenza viruses can be also adapted to understanding immunity to other infections or vaccination approaches in macaque models.


Asunto(s)
Vacunas contra la Influenza , Gripe Humana , Infecciones por Orthomyxoviridae , Animales , Anticuerpos Antivirales , Chlorocebus aethiops , Citometría de Flujo , Glicoproteínas Hemaglutininas del Virus de la Influenza , Humanos , Leucocitos Mononucleares , Macaca mulatta , Ratones , Linfocitos T , Vacunación
18.
Vaccines (Basel) ; 8(4)2020 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-33339174

RESUMEN

H4 influenza viruses have been isolated from birds across the world. In recent years, an H4 influenza virus infection has been confirmed in pigs. Pigs play an important role in the transmission of influenza viruses to human hosts. Therefore, it is important to develop a new vaccine in the case of an H4 influenza virus infection in humans, considering that this virus has a different antigenicity from seasonal human influenza viruses. In this study, after selecting vaccine candidate strains based on their antigenic relation to one of the pig isolates, A/swine/Missouri/A01727926/2015 (H4N6) (MO/15), an inactivated whole-particle vaccine was prepared from A/swan/Hokkaido/481102/2017 (H4N6). This vaccine showed high immunogenicity in mice, and the antibody induced by the vaccine showed high cross-reactivity to the MO/15 virus. This vaccine induced sufficient neutralizing antibodies and mitigated the effects of an MO/15 infection in a mouse model. This study is the first to suggest that an inactivated whole-particle vaccine prepared from an influenza virus isolated from wild birds is an effective countermeasure in case of a future influenza pandemic caused by the H4 influenza virus.

19.
Sci Rep ; 10(1): 10879, 2020 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-32616893

RESUMEN

Although the severity of influenza virus infections has been associated with host energy metabolism, the related mechanisms have not yet been clarified. Here we examined the effects of influenza virus infection on host energy metabolism in mice. After infecting mice with intranasal applications of 500 plaque-forming units of A/Puerto Rico/8/34 (H1N1; PR8) virus, the serum levels of most intermediates in the tricarboxylic acid (TCA) cycle and related metabolic pathways were significantly reduced. These data suggest that substrate supply to the TCA cycle is reduced under these conditions, rather than specific metabolic reactions being inhibited. Then, we focused on glucose and fatty acid metabolism that supply substrates to the TCA cycle. Akt phosphorylation following insulin injections was attenuated in the livers of PR8 virus-infected mice. Furthermore, glucose tolerance tests revealed that the PR8 virus-infected mice showed higher blood glucose levels than the vehicle-inoculated control mice. These results suggest that influenza virus infection impairs insulin signaling, which regulates glucose uptake. However, increases in the hepatic expressions of fatty acid-metabolizing enzymes suggest that fatty acids accumulate in liver cells of infected mice. Collectively, our data indicate that influenza virus infection dysregulates host energy metabolism. This line of investigation provides novel insights into the pathogenesis of influenza.


Asunto(s)
Ciclo del Ácido Cítrico , Metabolismo Energético , Ácidos Grasos/metabolismo , Subtipo H1N1 del Virus de la Influenza A/fisiología , Insulina/fisiología , Infecciones por Orthomyxoviridae/metabolismo , Animales , Citocinas/sangre , Inducción Enzimática , Regulación de la Expresión Génica , Glucosa/metabolismo , Resistencia a la Insulina , Hígado/metabolismo , Hígado/virología , Masculino , Metaboloma , Ratones , Ratones Endogámicos C57BL , Fosforilación , Procesamiento Proteico-Postraduccional , Proteínas Proto-Oncogénicas c-akt/metabolismo , Purinas/metabolismo , Transducción de Señal
20.
Pharm Res ; 37(6): 115, 2020 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-32483763

RESUMEN

PURPOSE: In this study, we investigated organic anion transporting polypeptide 2B1 (OATP2B1)-mediated uptake of fluorescent anions to better identify fluorescent substrates for in vitro OATP2B1 assays. The OATP2B1 is involved in the intestinal absorption and one of the pharmacokinetic determinants of orally administered drugs. METHODS: A microplate reader was used to determine the cellular accumulation of the fluorescent compounds into the OATP2B1 or the empty vector-transfected HEK293 cells. RESULTS: Two types of derivatives were found to be OATP2B1 substrates: heavy halogenated derivatives, such as 4',5'-dibromofluorescein (DBF), and carboxylated derivatives, such as 5-carboxyfluorescein (5-CF). The DBF and 5-CF were transported in a time and concentration-dependent manner. The DBF was transported at a broad pH (pH 6.5-8.0) while 5-CF was transported at an acidic pH (pH 5.5-6.5). The Km values were 0.818 ± 0.067 µM at pH 7.4 for DBF and 8.56 ± 0.41 µM at pH 5.5 for 5-CF. The OATP2B1 inhibitors, including atorvastatin, bromosulfophthalein, glibenclamide, sulfasalazine, talinolol, and estrone 3-sulfate, inhibited the DBF and the 5-CF transport. Contrastively, testosterone, dehydroepiandrosterone sulfate, and progesterone inhibited the DBF transport but stimulated the 5-CF transport. Natural flavonoid aglycones, such as naringenin and baicalein, also exhibited substrate-dependent effects in this manner. CONCLUSION: We found two fluorescein analogs, DBF and 5-CF as the OATP2B1 substrates that exhibited substrate-dependent interactions.


Asunto(s)
Transporte Biológico/efectos de los fármacos , Colorantes Fluorescentes/metabolismo , Transportadores de Anión Orgánico/metabolismo , Interacciones Farmacológicas , Células HEK293 , Humanos , Absorción Intestinal/fisiología , Transportadores de Anión Orgánico/antagonistas & inhibidores
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...