Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 28
2.
Am J Physiol Heart Circ Physiol ; 323(1): H38-H48, 2022 07 01.
Article En | MEDLINE | ID: mdl-35522554

Rebuilding the local vasculature is central to restoring the health of muscles subjected to ischemic injury. Arteriogenesis yields remodeled collateral arteries that circumvent the obstruction, and angiogenesis produces capillaries to perfuse the regenerating myofibers. However, the vital intervening network of arterioles that feed the regenerated capillaries is poorly understood and is an investigative challenge. We used machine learning and automated micromorphometry to quantify the arteriolar landscape in distal hindlimb muscles in mice that have regenerated after femoral artery excision. Assessment of 1,546 arteriolar sections revealed a striking (>2-fold) increase in arteriolar density in regenerated muscle 14 and 28 days after ischemic injury. Lumen caliber was initially similar to that of control arterioles but after 4 wk lumen area was reduced by 46%. In addition, the critical smooth muscle layer was attenuated throughout the arteriolar network, across a 150- to 5-µm diameter range. To understand the consequences of the reshaped distal hindlimb arterioles, we undertook computational flow modeling, which revealed blunted flow augmentation. Moreover, impaired flow reserve was confirmed in vivo by laser-Doppler analyses of flow in response to directly applied sodium nitroprusside. Thus, in hindlimb muscles regenerating after ischemic injury, the arteriolar network is amplified, inwardly remodels, and is diffusely undermuscularized. These defects and the associated flow restraints could contribute to the deleterious course of peripheral artery disease and merit attention when considering therapeutic innovations.NEW & NOTEWORTHY We report a digital pipeline for interrogating the landscape of arterioles in mouse skeletal muscle, using machine learning and automated micromorphometry. This revealed that in muscle regenerating after ischemic injury, the arteriolar density is increased but lumen caliber and smooth muscle content are reduced. Computational modeling and experimental validation reveal this arteriolar network to be functionally compromised, with diminished microvascular flow reserve.


Collateral Circulation , Neovascularization, Physiologic , Animals , Arterioles , Computer Simulation , Femoral Artery/surgery , Hindlimb/blood supply , Ischemia , Mice , Muscle, Skeletal/blood supply , Perfusion , Regional Blood Flow
3.
Sci Adv ; 7(48): eabg9509, 2021 Nov 26.
Article En | MEDLINE | ID: mdl-34826235

Efforts to promote sprouting angiogenesis in skeletal muscles of individuals with peripheral artery disease have not been clinically successful. We discovered that, contrary to the prevailing view, angiogenesis following ischemic muscle injury in mice was not driven by endothelial sprouting. Instead, real-time imaging revealed the emergence of wide-caliber, primordial conduits with ultralow flow that rapidly transformed into a hierarchical neocirculation by transluminal bridging and intussusception. This process was accelerated by inhibiting vascular endothelial growth factor receptor-2 (VEGFR2). We probed this response by developing the first live-cell model of transluminal endothelial bridging using microfluidics. Endothelial cells subjected to ultralow shear stress could reposition inside the flowing lumen as pillars. Moreover, the low-flow lumen proved to be a privileged location for endothelial cells with reduced VEGFR2 signaling capacity, as VEGFR2 mechanosignals were boosted. These findings redefine regenerative angiogenesis in muscle as an intussusceptive process and uncover a basis for its launch.

4.
Arterioscler Thromb Vasc Biol ; 40(10): 2454-2467, 2020 10.
Article En | MEDLINE | ID: mdl-32787524

OBJECTIVE: There has been little success in translating preclinical studies of mouse hind limb ischemia into benefit for patients with peripheral artery disease. Using systematic strategies, we sought to define the injury and angiogenesis landscapes in mice subjected to hind limb ischemia and ascertain whether published studies to date have used an analysis strategy concordant with these data. Approach and Results: Maps of ischemic injury were generated from 22 different hind limb muscles and 33 muscle territories in 12-week-old C57BL/6 mice, based on loss or centralization of myofiber nuclei. Angiogenesis was similarly mapped based on CD (cluster of differentiation) 31-positive capillary content. Only 10 of 33 muscle territories displayed consistent muscle injury, with the distal anterior hind limb muscles most reliably injured. Angiogenesis was patchy and exclusively associated with zones of regenerated muscle (central nuclei). Angiogenesis was not observed in normal appearing muscle, necrotic muscle, or injury border zones. Systematic review of mouse hind limb angiogenesis studies identified 5147 unique publications, of which 509 met eligibility criteria for analysis. Only 7% of these analyzed manuscripts evaluated angiogenesis in distal anterior hind limb muscles and only 15% consistently examined for angiogenesis in zones of muscle regeneration. CONCLUSIONS: In 12-week C57BL/6 mice, angiogenesis postfemoral artery excision proceeds exclusively in zones of muscle regeneration. Only a minority of studies to date have analyzed angiogenesis in regions of demonstrably regenerating muscle or in high-likelihood territories. Quality assurance standards, informed by the atlas and mapping data herein, could augment data reliability and potentially help translate mouse hind limb ischemia studies to patient care.


Ischemia/physiopathology , Muscle, Skeletal/blood supply , Neovascularization, Physiologic , Research Design/standards , Animals , Data Accuracy , Disease Models, Animal , Hindlimb , Ischemia/pathology , Male , Mice, Inbred C57BL , Muscle Development , Muscle, Skeletal/pathology , Necrosis , Regeneration , Regional Blood Flow , Time Factors
5.
iScience ; 23(6): 101251, 2020 Jun 26.
Article En | MEDLINE | ID: mdl-32629616

Critical limb ischemia (CLI) is a hazardous manifestation of atherosclerosis and treatment failure is common. Abnormalities in the arterioles might underlie this failure but the cellular pathobiology of microvessels in CLI is poorly understood. We analyzed 349 intramuscular arterioles in lower limb specimens from individuals with and without CLI. Arteriolar densities were 1.8-fold higher in CLI muscles. However, 33% of small (<20 µm) arterioles were stenotic and 9% were completely occluded. The lumens were closed by bulky, re-oriented endothelial cells expressing abundant N-cadherin that uniquely localized between adjacent and opposing endothelial cells. S100A4 and SNAIL1 were also expressed, supporting an endothelial-to-mesenchymal transition. SMAD2/3 was activated in occlusive endothelial cells and TGFß1 was increased in the adjacent mural cells. These findings identify a microvascular closure process based on mesenchymal transitions in a hyper-TGFß environment that may, in part, explain the limited success of peripheral artery revascularization procedures.

6.
J Nutr Biochem ; 70: 65-74, 2019 08.
Article En | MEDLINE | ID: mdl-31176988

Vitamin D appears to either promote or inhibit neovascularization in a disease context-dependent manner. The effects of vitamin D, alone or in combination with niacin, on endothelial cell (EC) angiogenic function and on revascularization in obese animals with peripheral ischemia are unknown. Here, we report that supplementation of high palmitate medium with vitamin D, niacin or both vitamins increased EC tube formation, which relies primarily on cell migration, and also maintained tube stability over time. Transcriptomic analyses revealed that both vitamins increased stress response and anti-inflammatory gene expression. However, vitamin D decreased cell cycle gene expression and inhibited proliferation, while niacin induced stable expression of miR-126-3p and -5p and maintained cell proliferation in high palmitate. To assess vascular regeneration, diet-induced obese mice received vitamin D, niacin or both vitamins following hind limb ischemic injury. Niacin, but not vitamin D or combined treatment, improved recovery of hind limb use. Histology of tibialis anterior sections revealed no improvements in revascularization, regeneration, inflammation or fibrosis with vitamin D or combined treatment. In summary, although both vitamin D and niacin increased angiogenic function of EC cultures in high fat, only niacin improved recovery of hind limb use following ischemic injury in obese mice. It is possible that inhibition of cell proliferation by vitamin D in high-fat conditions limits vascular regeneration and recovery from peripheral ischemia in obesity.


Diet , Ischemia/pathology , Neovascularization, Physiologic/drug effects , Niacin/pharmacology , Veins/pathology , Vitamin D/pharmacology , Animals , Cell Movement , Cell Proliferation , Endothelial Cells/cytology , Gene Expression Profiling , Hindlimb/blood supply , Inflammation , Male , Metabolic Syndrome/pathology , Mice , Mice, Obese , Microcirculation , Neovascularization, Pathologic , Palmitic Acid/pharmacology , Regeneration , Transcriptome
7.
EBioMedicine ; 43: 54-66, 2019 05.
Article En | MEDLINE | ID: mdl-31078518

BACKGROUND: Ascending aortic aneurysms constitute an important hazard for individuals with a bicuspid aortic valve (BAV). However, the processes that degrade the aortic wall in BAV disease remain poorly understood. METHODS: We undertook in situ analysis of ascending aortas from 68 patients, seeking potentially damaging cellular senescence cascades. Aortas were assessed for senescence-associated-ß-galactosidase activity, p16Ink4a and p21 expression, and double-strand DNA breaks. The senescence-associated secretory phenotype (SASP) of cultured-aged BAV aortic smooth muscle cells (SMCs) was evaluated by transcript profiling and consequences probed by combined immunofluorescence and circular polarization microscopy. The contribution of p38 MAPK signaling was assessed by immunostaining and blocking strategies. FINDINGS: We uncovered SMCs at varying depths of cellular senescence within BAV- and tricuspid aortic valve (TAV)-associated aortic aneurysms. Senescent SMCs were also abundant in non-aneurysmal BAV aortas but not in non-aneurysmal TAV aortas. Multivariable analysis revealed that BAV disease independently associated with SMC senescence. Furthermore, SMC senescence was heightened at the convexity of aortas associated with right-left coronary cusp fusion. Aged BAV SMCs had a pronounced collagenolytic SASP. Moreover, senescent SMCs in the aortic wall were enriched with surface-localized MMP1 and surrounded by weakly birefringent collagen fibrils. The senescent-collagenolytic SMC phenotype depended on p38 MAPK signaling, which was chronically activated in BAV aortas. INTERPRETATION: We have identified a cellular senescence-collagen destruction axis in at-risk ascending aortas. This novel "seno-destructive" SMC phenotype could open new opportunities for managing BAV aortopathy. FUND: Canadian Institutes of Health Research, Lawson Health Research Institute, Heart and Stroke Foundation of Ontario/Barnett-Ivey Chair.


Aorta/metabolism , Aorta/pathology , Aortic Valve/abnormalities , Heart Valve Diseases/pathology , Myocytes, Smooth Muscle/metabolism , Aged , Aged, 80 and over , Aortic Aneurysm/etiology , Aortic Aneurysm/metabolism , Aortic Aneurysm/pathology , Aortic Valve/pathology , Bicuspid Aortic Valve Disease , Biomarkers , Cells, Cultured , Cellular Senescence , Collagen/metabolism , DNA Breaks, Double-Stranded , Female , Heart Valve Diseases/complications , Humans , Immunohistochemistry , Middle Aged , Muscle, Smooth, Vascular/metabolism , Muscle, Smooth, Vascular/pathology , Myocytes, Smooth Muscle/pathology , Proteolysis , Risk Factors
8.
Adv Healthc Mater ; 8(8): e1801294, 2019 04.
Article En | MEDLINE | ID: mdl-30785239

Delivery of angiogenic growth factors lessens ischemia in preclinical models but has demonstrated little benefit in patients with peripheral vascular disease. Augmenting the wrapping of nascent microvessels by mural cells constitutes an alternative strategy to regenerating a functional microvasculature, particularly if integrated with a sustained delivery platform. Herein, electrospun poly(ester amide) (PEA) nanofiber mats are fabricated for delivering a mural cell-targeting factor, fibroblast growth factor 9 (FGF9). Proof-of-principle is established by placing FGF9/FGF2-loaded PEA fiber mats on the chick chorioallantoic membrane and identifying enhanced angiogenesis by 3D power Doppler micro-ultrasound imaging. To assess the delivery system in ischemic muscle, FGF9-loaded PEA fiber mats are implanted onto the surface of the tibialis anterior muscle of mice with hindlimb ischemia. The system supplies FGF9 into the tibialis anterior muscle and yields a neo-microvascular network with enhanced mural cell coverage up to 28 days after injury. The regenerating muscle that receives FGF9 display near-normal sized myofibers and reduced interstitial fibrosis. Moreover, the mice demonstrate improved locomotion. These findings of locally released FGF9 from PEA nanofibers raise prospects for a microvascular remodeling approach to improve muscle health in peripheral vascular disease.


Fibroblast Growth Factor 9/pharmacology , Ischemia/metabolism , Muscle, Skeletal , Nanofibers/chemistry , Neovascularization, Physiologic/drug effects , Amides/chemistry , Animals , Chickens , Chorioallantoic Membrane/blood supply , Chorioallantoic Membrane/drug effects , Electrochemical Techniques , Male , Mice , Mice, Inbred C57BL , Muscle, Skeletal/blood supply , Muscle, Skeletal/drug effects , Polyesters/chemistry
9.
Sci Rep ; 9(1): 698, 2019 01 24.
Article En | MEDLINE | ID: mdl-30679558

Virtual histology - utilizing high-resolution three-dimensional imaging - is becoming readily available. Micro-computed tomography (micro-CT) is widely available and is often coupled with x-ray attenuating histological stains that mark specific tissue components for 3D virtual histology. In this study we describe a new tri-element x-ray attenuating stain and perfusion protocol that provides micro-CT contrast of the entire vasculature of an intact mouse. The stain - derived from an established histology stain (Verhoeff's) - is modified to enable perfusion through the vasculature; the attenuating elements of the stain are iodine, aluminum, and iron. After a 30-minute perfusion through the vasculature (10-minute flushing with detergent-containing saline followed by 15-minute perfusion with the stain and a final 5-minute saline flush), animals are scanned using micro-CT. We demonstrate that the new staining protocol enables sharp delineation of the vessel walls in three dimensions over the whole body; corresponding histological analysis verified that the CT stain is localized primarily in the endothelial cells and media of large arteries and the endothelium of smaller vessels, such as the coronaries. The rapid perfusion and scanning protocol ensured that all tissues are available for further analysis via higher resolution CT of smaller sections or traditional histological sectioning.


Coloring Agents/analysis , Coronary Vessels/anatomy & histology , Coronary Vessels/diagnostic imaging , Image Processing, Computer-Assisted/methods , X-Ray Microtomography/methods , Animals , Coloring Agents/chemistry , Histological Techniques , Male , Mice , Mice, Inbred C57BL , Perfusion
10.
Circ Res ; 120(12): 1889-1902, 2017 Jun 09.
Article En | MEDLINE | ID: mdl-28356339

RATIONALE: The thoracic aortic wall can degenerate over time with catastrophic consequences. Vascular smooth muscle cells (SMCs) can resist and repair artery damage, but their capacities decline with age and stress. Recently, cellular production of nicotinamide adenine dinucleotide (NAD+) via nicotinamide phosphoribosyltransferase (Nampt) has emerged as a mediator of cell vitality. However, a role for Nampt in aortic SMCs in vivo is unknown. OBJECTIVES: To determine whether a Nampt-NAD+ control system exists within the aortic media and is required for aortic health. METHODS AND RESULTS: Ascending aortas from patients with dilated aortopathy were immunostained for NAMPT, revealing an inverse relationship between SMC NAMPT content and aortic diameter. To determine whether a Nampt-NAD+ control system in SMCs impacts aortic integrity, mice with Nampt-deficient SMCs were generated. SMC-Nampt knockout mice were viable but with mildly dilated aortas that had a 43% reduction in NAD+ in the media. Infusion of angiotensin II led to aortic medial hemorrhage and dissection. SMCs were not apoptotic but displayed senescence associated-ß-galactosidase activity and upregulated p16, indicating premature senescence. Furthermore, there was evidence for oxidized DNA lesions, double-strand DNA strand breaks, and pronounced susceptibility to single-strand breakage. This was linked to suppressed poly(ADP-ribose) polymerase-1 activity and was reversible on resupplying NAD+ with nicotinamide riboside. Remarkably, we discovered unrepaired DNA strand breaks in SMCs within the human ascending aorta, which were specifically enriched in SMCs with low NAMPT. NAMPT promoter analysis revealed CpG hypermethylation within the dilated human thoracic aorta and in SMCs cultured from these tissues, which inversely correlated with NAMPT expression. CONCLUSIONS: The aortic media depends on an intrinsic NAD+ fueling system to protect against DNA damage and premature SMC senescence, with relevance to human thoracic aortopathy.


Aortic Aneurysm, Thoracic/enzymology , Cytokines/biosynthesis , DNA Damage/physiology , Genome/physiology , Myocytes, Smooth Muscle/physiology , Nicotinamide Phosphoribosyltransferase/biosynthesis , Tunica Media/physiology , Adult , Aged , Animals , Aorta/enzymology , Aorta/pathology , Aortic Aneurysm, Thoracic/genetics , Aortic Aneurysm, Thoracic/pathology , Cells, Cultured , Cytokines/deficiency , Cytokines/genetics , Female , Humans , Laser Capture Microdissection/methods , Male , Mice , Mice, Knockout , Middle Aged , Myocytes, Smooth Muscle/pathology , Nicotinamide Phosphoribosyltransferase/deficiency , Nicotinamide Phosphoribosyltransferase/genetics , Tunica Media/pathology
11.
J Microsc ; 266(1): 89-103, 2017 04.
Article En | MEDLINE | ID: mdl-28218397

Immunohistochemical tissue staining enhances microvasculature characteristics, including the smooth muscle in the medial layer of the vessel walls that is responsible for regulation of blood flow. The vasculature can be imaged in a comprehensive fashion using whole-slide scanning. However, since each such image potentially contains hundreds of small vessels, manual vessel delineation and quantification is not practically feasible. In this work, we present a fully automatic segmentation and vasculature quantification algorithm for whole-slide images. We evaluated its performance on tissue samples drawn from the hind limbs of wild-type mice, stained for smooth muscle using 3,3'-Diaminobenzidine (DAB) immunostain. The algorithm was designed to be robust to vessel fragmentation due to staining irregularity, and artefactual staining of nonvessel objects. Colour deconvolution was used to isolate the DAB stain for detection of vessel wall fragments. Complete vessels were reconstructed from the fragments by joining endpoints of topological skeletons. Automatic measures of vessel density, perimeter, wall area and local wall thickness were taken. The segmentation algorithm was validated against manual measures, resulting in a Dice similarity coefficient of 89%. The relationships observed between these measures were as expected from a biological standpoint, providing further reinforcement of the accuracy of this system. This system provides a fully automated and accurate means of measuring the arteriolar and venular morphology of vascular smooth muscle.


Blood Vessels/anatomy & histology , Hindlimb/anatomy & histology , Image Processing, Computer-Assisted/methods , Immunohistochemistry/methods , Animals , Automation, Laboratory/methods , Mice
12.
Circ Res ; 120(9): 1453-1465, 2017 Apr 28.
Article En | MEDLINE | ID: mdl-28174322

RATIONALE: Angiogenesis occurs after ischemic injury to skeletal muscle, and enhancing this response has been a therapeutic goal. However, to appropriately deliver oxygen, a precisely organized and exquisitely responsive microcirculation must form. Whether these network attributes exist in a regenerated microcirculation is unknown, and methodologies for answering this have been lacking. OBJECTIVE: To develop 4-dimensional methodologies for elucidating microarchitecture and function of the reconstructed microcirculation in skeletal muscle. METHODS AND RESULTS: We established a model of complete microcirculatory regeneration after ischemia-induced obliteration in the mouse extensor digitorum longus muscle. Dynamic imaging of red blood cells revealed the regeneration of an extensive network of flowing neo-microvessels, which after 14 days structurally resembled that of uninjured muscle. However, the skeletal muscle remained hypoxic. Red blood cell transit analysis revealed slow and stalled flow in the regenerated capillaries and extensive arteriolar-venular shunting. Furthermore, spatial heterogeneity in capillary red cell transit was highly constrained, and red blood cell oxygen saturation was low and inappropriately variable. These abnormalities persisted to 120 days after injury. To determine whether the regenerated microcirculation could regulate flow, the muscle was subjected to local hypoxia using an oxygen-permeable membrane. Hypoxia promptly increased red cell velocity and flux in control capillaries, but in neocapillaries, the response was blunted. Three-dimensional confocal imaging revealed that neoarterioles were aberrantly covered by smooth muscle cells, with increased interprocess spacing and haphazard actin microfilament bundles. CONCLUSIONS: Despite robust neovascularization, the microcirculation formed by regenerative angiogenesis in skeletal muscle is profoundly flawed in both structure and function, with no evidence for normalizing over time. This network-level dysfunction must be recognized and overcome to advance regenerative approaches for ischemic disease.


Hypoxia/diagnostic imaging , Ischemia/diagnostic imaging , Microcirculation , Microscopy, Confocal/methods , Microscopy, Video/methods , Microvessels/diagnostic imaging , Muscle, Skeletal/blood supply , Neovascularization, Physiologic , Animals , Arterioles/diagnostic imaging , Arterioles/physiopathology , Capillaries/diagnostic imaging , Capillaries/physiopathology , Cell Hypoxia , Cellular Microenvironment , Disease Models, Animal , Erythrocytes/metabolism , Hindlimb , Hypoxia/blood , Hypoxia/physiopathology , Image Interpretation, Computer-Assisted , Ischemia/blood , Ischemia/physiopathology , Male , Mice, Inbred C57BL , Microvessels/physiopathology , Oxygen/blood , Regional Blood Flow , Time Factors , Venules/diagnostic imaging , Venules/physiopathology
13.
Pharmacol Res Perspect ; 4(3): e00233, 2016 06.
Article En | MEDLINE | ID: mdl-27433343

Niacin can reduce vascular disease risk in individuals with metabolic syndrome, but in light of recent large randomized controlled trials outcomes, its biological actions and clinical utility remain controversial. Niacin can improve endothelial function, vascular inflammation, and vascular regeneration, independent of correcting dyslipidemia, in various lean rodent models of vascular injury. Here, we tested whether niacin could directly improve endothelial cell angiogenic function during combined exposure to excess fatty acids and hypoxia, and whether intervention with niacin during continued feeding of western diet could improve revascularization and functional recovery in obese, hyperlipidemic mice with peripheral ischemia. Treatment with niacin (10 µmol/L) increased human microvascular endothelial cell angiogenic function during exposure to high fatty acids and hypoxia (2% oxygen), as determined by tube formation on Matrigel. To assess revascularization in vivo, we used western diet-induced obese mice with unilateral hind limb femoral artery ligation and excision. Treatment for 14 days postinjury with once daily i.p. injections of a low dose of niacin (50 mg/kg) improved recovery of hind limb use, in association with enhanced revascularization and decreased inflammation of the tibialis anterior muscle. These effects were concomitant with decreased plasma triglycerides, but not increased plasma apoAI. Thus, niacin improves endothelial tube formation under lipotoxic and hypoxic conditions, and moreover, promotes revascularization and functional hind limb recovery following ischemic injury in diet-induced obese mice with hyperlipidemia. These data may have implications for niacin therapy in the treatment of peripheral ischemic vascular disease associated with metabolic syndrome.

14.
Tissue Eng Part A ; 22(7-8): 584-96, 2016 Apr.
Article En | MEDLINE | ID: mdl-26955972

Therapeutic angiogenesis has emerged as a potential strategy to treat ischemic vascular diseases. However, systemic or local administration of growth factors is usually inefficient for maintaining the effective concentration at the site of interest due to their rapid clearance or degradation. In this study, we report a differential and sustained release of an angiogenic factor, fibroblast growth factor-2 (FGF2), and an arteriogenic factor, fibroblast growth factor-9 (FGF9), from α-amino acid-derived biodegradable poly(ester amide) (PEA) fibers toward targeting neovessel formation and maturation. FGF2 and FGF9 were dual loaded using a mixed blend and emulsion electrospinning technique and exhibited differential and sustained release from PEA fibers over 28 days with preserved bioactivity. In vitro angiogenesis assays showed enhanced endothelial cell (EC) tube formation and directed migration of smooth muscle cells (SMCs) to platelet-derived growth factor (PDGF)-BB and stabilized EC/SMC tube formation. FGF2/FGF9-loaded PEA fibers did not induce inflammatory responses in vitro using human monocytes or in vivo after their subcutaneous implantation into mice. Histological examination showed that FGF2/FGF9-loaded fibers induced cell niche recruitment around the site of implantation. Furthermore, controlled in vivo delivery of FGF9 to mouse tibialis anterior (TA) muscle resulted in a dose-dependent expansion of mesenchymal progenitor-like cell layers and extracellular matrix deposition. Our data suggest that the release of FGF2 and FGF9 from PEA fibers offers an efficient differential and sustained growth factor delivery strategy with relevance to therapeutic angiogenesis.


Amides/chemistry , Fibroblast Growth Factor 2/pharmacology , Fibroblast Growth Factor 9/pharmacology , Neovascularization, Physiologic/drug effects , Polyesters/chemistry , Tissue Engineering/methods , Animals , Cell Movement/drug effects , Delayed-Action Preparations , Emulsions , Endothelial Cells/cytology , Endothelial Cells/drug effects , Fibroblast Growth Factor 2/administration & dosage , Fibroblast Growth Factor 9/administration & dosage , Humans , Inflammation/pathology , Male , Mice, Inbred C57BL , Myocytes, Smooth Muscle/cytology , Myocytes, Smooth Muscle/drug effects , Prosthesis Implantation , Subcutaneous Tissue/drug effects , Subcutaneous Tissue/pathology
15.
J Biol Chem ; 290(36): 22127-42, 2015 Sep 04.
Article En | MEDLINE | ID: mdl-26183774

Tumor vessel normalization has been proposed as a therapeutic paradigm. However, normal microvessels are hierarchical and vasoreactive with single file transit of red blood cells through capillaries. Such a network has not been identified in malignant tumors. We tested whether the chaotic tumor microcirculation could be reconfigured by the mesenchyme-selective growth factor, FGF9. Delivery of FGF9 to renal tumors in mice yielded microvessels that were covered by pericytes, smooth muscle cells, and a collagen-fortified basement membrane. This was associated with reduced pulmonary metastases. Intravital microvascular imaging revealed a haphazard web of channels in control tumors but a network of arterioles, bona fide capillaries, and venules in FGF9-expressing tumors. Moreover, whereas vasoreactivity was absent in control tumors, arterioles in FGF9-expressing tumors could constrict and dilate in response to adrenergic and nitric oxide releasing agents, respectively. These changes were accompanied by reduced hypoxia in the tumor core and reduced expression of the angiogenic factor VEGF-A. FGF9 was found to selectively amplify a population of PDGFRß-positive stromal cells in the tumor and blocking PDGFRß prevented microvascular differentiation by FGF9 and also worsened metastases. We conclude that harnessing local mesenchymal stromal cells with FGF9 can differentiate the tumor microvasculature to an extent not observed previously.


Fibroblast Growth Factor 9/genetics , Kidney Neoplasms/blood supply , Kidney Neoplasms/genetics , Microcirculation , Animals , Cell Line , Cell Line, Tumor , Cells, Cultured , Female , Fibroblast Growth Factor 9/metabolism , Gene Expression Regulation, Neoplastic , Humans , Immunoblotting , Kidney Neoplasms/pathology , Lung Neoplasms/genetics , Lung Neoplasms/metabolism , Lung Neoplasms/secondary , Mice, Inbred BALB C , Mice, Inbred C57BL , Receptor, Platelet-Derived Growth Factor beta/genetics , Receptor, Platelet-Derived Growth Factor beta/metabolism , Reverse Transcriptase Polymerase Chain Reaction , Transgenes/genetics , Vascular Endothelial Growth Factor A/genetics , Vascular Endothelial Growth Factor A/metabolism
16.
PLoS One ; 10(5): e0126817, 2015.
Article En | MEDLINE | ID: mdl-26024221

Structural abnormalities of the microvasculature can impair perfusion and function. Conventional histology provides good spatial resolution with which to evaluate the microvascular structure but affords no 3-dimensional information; this limitation could lead to misinterpretations of the complex microvessel network in health and disease. The objective of this study was to develop and evaluate an accurate, fully automated 3D histology reconstruction method to visualize the arterioles and venules within the mouse hind-limb. Sections of the tibialis anterior muscle from C57BL/J6 mice (both normal and subjected to femoral artery excision) were reconstructed using pairwise rigid and affine registrations of 5 µm-thick, paraffin-embedded serial sections digitized at 0.25 µm/pixel. Low-resolution intensity-based rigid registration was used to initialize the nucleus landmark-based registration, and conventional high-resolution intensity-based registration method. The affine nucleus landmark-based registration was developed in this work and was compared to the conventional affine high-resolution intensity-based registration method. Target registration errors were measured between adjacent tissue sections (pairwise error), as well as with respect to a 3D reference reconstruction (accumulated error, to capture propagation of error through the stack of sections). Accumulated error measures were lower (p < 0.01) for the nucleus landmark technique and superior vasculature continuity was observed. These findings indicate that registration based on automatic extraction and correspondence of small, homologous landmarks may support accurate 3D histology reconstruction. This technique avoids the otherwise problematic "banana-into-cylinder" effect observed using conventional methods that optimize the pairwise alignment of salient structures, forcing them to be section-orthogonal. This approach will provide a valuable tool for high-accuracy 3D histology tissue reconstructions for analysis of diseased microvasculature.


Imaging, Three-Dimensional/methods , Microvessels/pathology , Algorithms , Animals , Mice , Mice, Inbred C57BL
17.
Contrast Media Mol Imaging ; 9(5): 383-90, 2014.
Article En | MEDLINE | ID: mdl-24764151

Recent studies have investigated histological staining compounds as micro-computed tomography (micro-CT) contrast agents, delivered by soaking tissue specimens in stain and relying on passive diffusion for agent uptake. This study describes a perfusion approach using iodine or phosphotungstic acid (PTA) stains, delivered to an intact mouse, to capitalize on the microvasculature as a delivery conduit for parenchymal staining and direct contact for staining artery walls. Twelve C57BL/6 mice, arterially perfused with either 25% Lugol's solution or 5% PTA solution were scanned intact and reconstructed with 26 µm isotropic voxels. The animals were fixed and the heart and surrounding vessels were excised, embedded and scanned; isolated heart images were reconstructed with 13 µm isotropic voxels. Myocardial enhancement and artery diameters were measured. Both stains successfully enhanced the myocardium and vessel walls. Interestingly, Lugol's solution provided a significantly higher enhancement of the myocardium than PTA [2502 ± 437 vs 656 ± 178 Hounsfield units (HU); p < 0.0001], delineating myofiber architecture and orientation. There was no significant difference in vessel wall enhancement (Lugol's, 1036 ± 635 HU; PTA, 738 ± 124 HU; p = 0.29), but coronary arteries were more effectively segmented from the PTA-stained hearts, enabling segmented imaging of fifth- order coronary artery branches. The combination of whole mouse perfusion delivery and use of heavy metal-containing stains affords high-resolution imaging of the mouse heart and vasculature by micro-CT. The differential imaging patterns of Lugol's- and PTA-stained tissues reveals new opportunities for micro-analyses of cardiac and vascular tissues.


Imaging, Three-Dimensional/methods , Iodine , Phosphotungstic Acid/chemistry , Animals , Contrast Media/chemistry , Coronary Vessels/diagnostic imaging , Heart/diagnostic imaging , Iodine/chemistry , Mice , Tomography, X-Ray Computed
18.
Aging Cell ; 13(1): 121-30, 2014 Feb.
Article En | MEDLINE | ID: mdl-23957394

Collagen fibrils become resistant to cleavage over time. We hypothesized that resistance to type I collagen proteolysis not only marks biological aging but also drives it. To test this, we followed mice with a targeted mutation (Col1a1(r/r) ) that yields collagenase-resistant type I collagen. Compared with wild-type littermates, Col1a1(r/r) mice had a shortened lifespan and developed features of premature aging including kyphosis, weight loss, decreased bone mineral density, and hypertension. We also found that vascular smooth muscle cells (SMCs) in the aortic wall of Col1a1(r/r) mice were susceptible to stress-induced senescence, displaying senescence-associated ß-galactosidase (SA-ßGal) activity and upregulated p16(INK4A) in response to angiotensin II infusion. To elucidate the basis of this pro-aging effect, vascular SMCs from twelve patients undergoing coronary artery bypass surgery were cultured on collagen derived from Col1a1(r/r) or wild-type mice. This revealed that mutant collagen directly reduced replicative lifespan and increased stress-induced SA-ßGal activity, p16(INK4A) expression, and p21(CIP1) expression. The pro-senescence effect of mutant collagen was blocked by vitronectin, a ligand for αvß3 integrin that is presented by denatured but not native collagen. Moreover, inhibition of αvß3 with echistatin or with αvß3-blocking antibody increased senescence of SMCs on wild-type collagen. These findings reveal a novel aging cascade whereby resistance to collagen cleavage accelerates cellular aging. This interplay between extracellular and cellular compartments could hasten mammalian aging and the progression of aging-related diseases.


Aging/metabolism , Aorta/metabolism , Aorta/pathology , Cellular Senescence , Collagen Type I/metabolism , Collagenases/metabolism , Aging/pathology , Angiotensin II/pharmacology , Animals , Collagen Type I, alpha 1 Chain , Embryo, Mammalian/cytology , Fibroblasts/drug effects , Fibroblasts/metabolism , Fibroblasts/pathology , Humans , Hypertension/metabolism , Integrin alphaVbeta3/metabolism , Longevity , Mice , Mice, Inbred C57BL , Myocytes, Smooth Muscle/metabolism , Myocytes, Smooth Muscle/pathology , Phenotype , Proteolysis/drug effects , Stress, Physiological/drug effects
19.
Am J Pathol ; 179(5): 2189-98, 2011 Nov.
Article En | MEDLINE | ID: mdl-21907695

Efficient deposition of type I collagen is fundamental to healing after myocardial infarction. Whether there is also a role for cleavage of type I collagen in infarct healing is unknown. To test this, we undertook coronary artery occlusion in mice with a targeted mutation (Col1a1(r/r)) that yields collagenase-resistant type I collagen. Eleven days after infarction, Col1a1(r/r) mice had a lower mean arterial pressure and peak left ventricular systolic pressure, reduced ventricular systolic function, and worse diastolic function, compared with wild-type littermates. Infarcted Col1a1(r/r) mice also had greater 30-day mortality, larger left ventricular lumens, and thinner infarct walls. Interestingly, the collagen fibril content within infarcts of mutant mice was not increased. However, circular polarization microscopy revealed impaired collagen fibril organization and mechanical testing indicated a predisposition to scar microdisruption. Three-dimensional lattices of collagenase-resistant fibrils underwent cell-mediated contraction, but the fibrils did not organize into birefringent collagen bundles. In addition, time-lapse microscopy revealed that, although cells migrated smoothly on wild-type collagen fibrils, crawling and repositioning on collagenase-resistant collagen was impaired. We conclude that type I collagen cleavage is required for efficient healing of myocardial infarcts and is critical for both dynamic positioning of collagen-producing cells and hierarchical assembly of collagen fibrils. This seemingly paradoxical requirement for collagen cleavage in fibrotic repair should be considered when designing potential strategies to inhibit matrix degradation in cardiac disease.


Collagen Type I/metabolism , Collagenases/physiology , Fibroblasts/enzymology , Myocardial Infarction/enzymology , Wound Healing/physiology , Animals , Cell Movement , Collagen Type I/genetics , Collagen Type I, alpha 1 Chain , Collagenases/genetics , Constriction , Coronary Vessels , Fibroblasts/physiology , Male , Mice , Mice, Inbred C57BL , Mutation/genetics
20.
Arterioscler Thromb Vasc Biol ; 31(12): 2938-48, 2011 Dec.
Article En | MEDLINE | ID: mdl-21852558

OBJECTIVE: The goal of this study was to characterize the factors and conditions required for smooth muscle cell (SMC)-directed differentiation of Sox2(+) multipotent rat and human skin-derived precursors (SKPs) and to define whether they represent a source of fully functional vascular SMCs for applications in vivo. METHODS AND RESULTS: We found that rat SKPs can differentiate almost exclusively into SMCs by reducing serum concentrations to 0.5% to 2% and plating them at low density. Human SKPs derived from foreskin required the addition of transforming growth factor-ß1 or -ß3 to differentiate into SMCs, but they did so even in the absence of serum. SMC formation was confirmed by quantitative reverse transcription-polymerase chain reaction, immunocytochemistry, and fluorescence-activated cell sorting, with increased expression of smoothelin-B and little to no expression of telokin or smooth muscle γ-actin, together indicating that SKPs differentiated into vascular rather than visceral SMCs. Rat and human SKP-derived SMCs were able to contract in vitro and also wrap around and support new capillary and larger blood vessel formation in angiogenesis assays in vivo. CONCLUSIONS: SKPs are Sox2(+) progenitors that represent an attainable autologous source of stem cells that can be easily differentiated into functional vascular SMCs in defined serum-free conditions without reprogramming. SKPs represent a clinically viable cell source for potential therapeutic applications in neovascularization.


Cell Differentiation , Multipotent Stem Cells/cytology , Muscle, Smooth, Vascular/cytology , Skin/cytology , Actins/metabolism , Animals , Cell Differentiation/drug effects , Cells, Cultured , Cytoskeletal Proteins/metabolism , Humans , Male , Models, Animal , Multipotent Stem Cells/drug effects , Muscle Proteins/metabolism , Muscle, Smooth, Vascular/drug effects , Muscle, Smooth, Vascular/metabolism , Myosin-Light-Chain Kinase/metabolism , Neovascularization, Physiologic/physiology , Peptide Fragments/metabolism , Rats , Rats, Sprague-Dawley , Transforming Growth Factor beta1/pharmacology , Transforming Growth Factor beta3/pharmacology
...