Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 90
Filtrar
1.
Int J Mol Sci ; 25(2)2024 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-38279224

RESUMEN

Many large-scale studies show that exogenous erythropoietin, erythropoiesis-stimulating agents, lack any renoprotective effects. We investigated the effects of endogenous erythropoietin on renal function in kidney ischemic reperfusion injury (IRI) using the prolyl hydroxylase domain (PHD) inhibitor, Roxadustat (ROX). Four h of hypoxia (7% O2) and 4 h treatment by ROX prior to IRI did not improve renal function. In contrast, 24-72 h pretreatment by ROX significantly improved the decline of renal function caused by IRI. Hypoxia and 4 h ROX increased interstitial cells-derived Epo production by 75- and 6-fold, respectively, before IRI, and worked similarly to exogenous Epo. ROX treatment for 24-72 h increased Epo production during IRI by 9-fold. Immunohistochemistry revealed that 24 h ROX treatment induced Epo production in proximal and distal tubules and worked similarly to endogenous Epo. Our data show that tubular endogenous Epo production induced by 24-72 h ROX treatment results in renoprotection but peritubular exogenous Epo production by interstitial cells induced by hypoxia and 4 h ROX treatment did not. Stimulation of tubular, but not peritubular, Epo production may link to renoprotection.


Asunto(s)
Eritropoyetina , Inhibidores de Prolil-Hidroxilasa , Daño por Reperfusión , Humanos , Eritropoyetina/farmacología , Riñón , Epoetina alfa/farmacología , Inhibidores de Prolil-Hidroxilasa/farmacología , Daño por Reperfusión/tratamiento farmacológico , Daño por Reperfusión/prevención & control , Hipoxia
2.
Am J Physiol Renal Physiol ; 326(3): F394-F410, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38153851

RESUMEN

Nuclear factor of activated T cells 5 (NFAT5; also called TonEBP/OREBP) is a transcription factor that is activated by hypertonicity and induces osmoprotective genes to protect cells against hypertonic conditions. In the kidney, renal tubular NFAT5 is known to be involved in the urine concentration mechanism. Previous studies have suggested that NFAT5 modulates the immune system and exerts various effects on organ damage, depending on organ and disease states. Pathophysiological roles of NFAT5 in renal tubular cells, however, still remain obscure. We conducted comprehensive analysis by performing transcription start site (TSS) sequencing on the kidney of inducible and renal tubular cell-specific NFAT5 knockout (KO) mice. Mice were subjected to unilateral ureteral obstruction to examine the relevance of renal tubular NFAT5 in renal fibrosis. TSS sequencing analysis identified 722 downregulated TSSs and 1,360 upregulated TSSs, which were differentially regulated ≤-1.0 and ≥1.0 in log2 fold, respectively. Those TSSs were annotated to 532 downregulated genes and 944 upregulated genes, respectively. Motif analysis showed that sequences that possibly bind to NFAT5 were enriched in TSSs of downregulated genes. Gene Ontology analysis with the upregulated genes suggested disorder of innate and adaptive immune systems in the kidney. Unilateral ureteral obstruction significantly exacerbated renal fibrosis in the renal medulla in KO mice compared with wild-type mice, accompanied by enhanced activation of immune responses. In conclusion, NFAT5 in renal tubules could have pathophysiological roles in renal fibrosis through modulating innate and adaptive immune systems in the kidney.NEW & NOTEWORTHY TSS-Seq analysis of the kidney from renal tubular cell-specific NFAT5 KO mice uncovered novel genes that are possibly regulated by NFAT5 in the kidney under physiological conditions. The study further implied disorders of innate and adaptive immune systems in NFAT5 KO mice, thereby exacerbating renal fibrosis at pathological states. Our results may implicate the involvement of renal tubular NFAT5 in the progression of renal fibrosis. Further studies would be worthwhile for the development of novel therapy to treat chronic kidney disease.


Asunto(s)
Obstrucción Ureteral , Animales , Ratones , Fibrosis , Expresión Génica , Riñón , Ratones Noqueados
3.
Molecules ; 28(11)2023 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-37298922

RESUMEN

Detection of erythropoietin (Epo) was difficult until a method was developed by the World Anti-Doping Agency (WADA). WADA recommended the Western blot technique using isoelectric focusing (IEF)-PAGE to show that natural Epo and injected erythropoiesis-stimulating agents (ESAs) appear in different pH areas. Next, they used sodium N-lauroylsarcosinate (SAR)-PAGE for better differentiation of pegylated proteins, such as epoetin ß pegol. Although WADA has recommended the use of pre-purification of samples, we developed a simple Western blotting method without pre-purification of samples. Instead of pre-purification, we used deglycosylation of samples before SDS-PAGE. The double detection of glycosylated and deglycosylated Epo bands increases the reliability of the detection of Epo protein. All of the endogenous Epo and exogenous ESAs shift to 22 kDa, except for Peg-bound epoetin ß pegol. All endogenous Epo and exogenous ESAs were detected as 22 kDa deglycosylated Epo by liquid chromatography/mass spectrum (LC/MS) analysis. The most important factor for the detection of Epo is the selection of the antibody against Epo. WADA recommended clone AE7A5, and we used sc-9620. Both antibodies are useful for the detection of Epo protein by Western blotting.


Asunto(s)
Líquidos Corporales , Eritropoyetina , Reproducibilidad de los Resultados , Focalización Isoeléctrica/métodos , Western Blotting , Anticuerpos , Electroforesis en Gel de Poliacrilamida , Detección de Abuso de Sustancias/métodos , Proteínas Recombinantes
4.
Molecules ; 27(3)2022 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-35164384

RESUMEN

Anemia is a major complication of chronic renal failure. To treat this anemia, prolylhydroxylase domain enzyme (PHD) inhibitors as well as erythropoiesis-stimulating agents (ESAs) have been used. Although PHD inhibitors rapidly stimulate erythropoietin (Epo) production, the precise sites of Epo production following the administration of these drugs have not been identified. We developed a novel method for the detection of the Epo protein that employs deglycosylation-coupled Western blotting. With protein deglycosylation, tissue Epo contents can be quantified over an extremely wide range. Using this method, we examined the effects of the PHD inhibitor, Roxadustat (ROX), and severe hypoxia on Epo production in various tissues in rats. We observed that ROX increased Epo mRNA expression in both the kidneys and liver. However, Epo protein was detected in the kidneys but not in the liver. Epo protein was also detected in the salivary glands, spleen, epididymis and ovaries. However, both PHD inhibitors (ROX) and severe hypoxia increased the Epo protein abundance only in the kidneys. These data show that, while Epo is produced in many tissues, PHD inhibitors as well as severe hypoxia regulate Epo production only in the kidneys.


Asunto(s)
Eritropoyetina/metabolismo , Glicina/análogos & derivados , Isoquinolinas/farmacología , Inhibidores de Prolil-Hidroxilasa/farmacología , Biosíntesis de Proteínas/efectos de los fármacos , Animales , Eritropoyetina/análisis , Eritropoyetina/genética , Femenino , Glicina/farmacología , Hipoxia/genética , Hipoxia/metabolismo , Riñón/efectos de los fármacos , Riñón/metabolismo , Masculino , Ratas , Ratas Sprague-Dawley , Regulación hacia Arriba/efectos de los fármacos
6.
Molecules ; 26(17)2021 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-34500833

RESUMEN

The kidney is a main site of erythropoietin production in the body. We developed a new method for the detection of Epo protein by deglycosylation-coupled Western blotting. Detection of deglycosylated Epo enables the examination of small changes in Epo production. Using this method, we investigated the effects of angiotensin II (ATII) on Epo production in the kidney. ATII stimulated the plasma Epo concentration; Epo, HIF2α, and PHD2 mRNA expression in nephron segments in the renal cortex and outer medulla; and Epo protein expression in the renal cortex. In situ hybridization and immunohistochemistry revealed that ATII stimulates Epo mRNA and protein expression not only in proximal tubules but also in collecting ducts, especially in intercalated cells. These data support the regulation of Epo production in the kidney by the renin-angiotensin-aldosterone system (RAS).


Asunto(s)
Angiotensina II/farmacología , Eritropoyetina/metabolismo , Riñón/metabolismo , Hígado/metabolismo , Animales , Western Blotting , Humanos , Riñón/efectos de los fármacos , Hígado/efectos de los fármacos
7.
J Endocrinol ; 249(2): 95-112, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33705345

RESUMEN

Rhesus C glycoprotein (Rhcg), an ammonia transporter, is a key molecule in urinary acid excretion and is expressed mainly in the intercalated cells (ICs) of the renal collecting duct. In the present study we investigated the role of aldosterone in the regulation of Rhcg expression. In in vivo experiments using C57BL/6J mice, Western blot analysis showed that continuous subcutaneous administration of aldosterone increased the expression of Rhcg in membrane fraction of the kidney. Supplementation of potassium inhibited the effect of aldosterone on the Rhcg. Next, mice were subjected to adrenalectomy with or without administration of aldosterone, and then ad libitum 0.14 M NH4Cl containing water was given. NH4Cl load increased the expression of Rhcg in membrane fraction. Adrenalectomy decreased NH4Cl-induced Rhcg expression, which was restored by administration of aldosterone. Immunohistochemical studies revealed that NH4Cl load induced the localization of Rhcg at the apical membrane of ICs in the outer medullary collecting duct. Adrenalectomy decreased NH4Cl-induced membrane localization of Rhcg, which was restored by administration of aldosterone. For in vitro experiments, IN-IC cells, an immortalized cell line stably expressing Flag-tagged Rhcg (Rhcg-Flag), were used. Western blot analysis showed that aldosterone increased the expression of Rhcg-Flag in membrane fraction, while the increase in extracellular potassium level inhibited the effect of aldosterone. Both spironolactone and GÓ§6983, a PKC inhibitor, inhibited the expression of Rhcg-Flag in the membrane fraction. These results suggest that aldosterone regulates the membrane expression of Rhcg through the mineralocorticoid receptor and PKC pathways, which is modulated by extracellular potassium level.


Asunto(s)
Aldosterona/farmacología , Proteínas de Transporte de Catión/metabolismo , Regulación de la Expresión Génica/efectos de los fármacos , Riñón/metabolismo , Glicoproteínas de Membrana/metabolismo , Equilibrio Ácido-Base , Aldosterona/administración & dosificación , Cloruro de Amonio/administración & dosificación , Compuestos de Amonio/orina , Animales , Proteínas de Transporte de Catión/genética , Proteínas Inmediatas-Precoces/genética , Proteínas Inmediatas-Precoces/metabolismo , Infusiones Subcutáneas , Masculino , Glicoproteínas de Membrana/genética , Ratones , Ratones Endogámicos C57BL , Oligopéptidos/genética , Oligopéptidos/metabolismo , Potasio/metabolismo , Proteína Quinasa C/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo
8.
Heliyon ; 6(11): e05389, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-33195841

RESUMEN

Doping tests for the illegal use of erythropoiesis-stimulating agents (ESAs) have been developed. We developed a new Western blotting method to detect and distinguish endogenous erythropoietin (Epo, 35-38 kDa) and exogenous ESAs (epoetin α and ß, 38-42 kDa; darbepoetin α, 47-50 kDa; epoetin ß pegol, 93-110 kDa). Epo and ESAs are glycoproteins and deglycosylation using peptide-N-glycosidase F shifted all Epo and ESA bands except epoetin ß pegol to 22 kDa. We cut the bands of Epo and ESAs from SDS-PAGE gels and analyzed them by Liquid Chromatography/Mass Spectrometry (LC/MS). LC/MS detected all endogenous Epo and exogenous ESAs as deglycosylated 22 kDa Epo, indicating that LC/MS analysis could confirm the presence of Epo or ESA, but could not distinguish between endogenous Epo and exogenous ESAs. We propose the following Epo doping tests: 1) detect Epo or ESAs by Western blotting of the glycosylated form; 2) increase the reliability by the band shift following deglycosylation; and 3) complete confirmation of Epo or ESA by LC/MS analysis using cut gels. One of the advantages of our method is that pre-purification of samples for Epo is not required in our Western blotting.

9.
Physiol Rep ; 8(12): e14485, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32592328

RESUMEN

The detection of erythropoietin (Epo) protein by Western blotting has required pre-purification of the sample. We developed a new Western blot method to detect plasma and urinary Epo using deglycosylation. Epo in urine and tissue, and erythropoiesis-stimulating agents (ESAs) in urine were directly detected by our Western blotting. Plasma Epo and ESAs were not detected by direct application but were detected by our Western blotting after deglycosylation. The broad bands of Epo and ESAs were shifted to 22 kDa by deglycosylation except for PEG-bound epoetin ß pegol. The 22 kDa band from an anemic patient's urine was confirmed by Liquid Chromatography/Mass Spectrometry (LC/MS) to contain human Epo. Severe hypoxia (7% O2, 4 hr) caused a 400-fold increase in deglycosylated Epo expression in rat kidneys, which is consistent with the increases in both Epo gene expression and plasma Epo concentration. Immunohistochemistry showed Epo expression in nephrons but not in interstitial cells under control conditions, and hypoxia increased Epo expression in interstitial cells but not in tubules. These data show that intrinsic Epo and all ESAs can be detected by Western blot either directly in urine or after deglycosylation in blood, and that the kidney but not the liver is the main site of Epo production in control and severe hypoxia. Our method will make the tests for Epo doping and detection easy.


Asunto(s)
Eritropoyetina/biosíntesis , Hipoxia/metabolismo , Riñón/metabolismo , Hígado/metabolismo , Anemia/sangre , Anemia/orina , Animales , Western Blotting/métodos , Modelos Animales de Enfermedad , Eritropoyetina/sangre , Eritropoyetina/orina , Glicosilación , Humanos , Hipoxia/sangre , Hipoxia/orina , Masculino , Ratas , Ratas Sprague-Dawley
10.
Anticancer Res ; 39(11): 6259-6263, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31704855

RESUMEN

BACKGROUND/AIM: Kita-Kyushu lung cancer antigen-1 (KK-LC-1) is a known cancer/testis antigen. Our group has previously shown KK-LC-1 gene expression in gastric cancer. However, could not be detected the KK-LC-1 protein due to the lack of an appropriate antibody. Here, we assessed our original monoclonal antibody (Kmab34B3) and, using it, assessed the expression of KK-LC-1 in gastric cancer. PATIENTS AND METHODS: We evaluated an original monoclonal antibody against KK-LC-1 (Kmab34B3), and used this antibody to compare KK-LC-1 protein expression in tumour and non-tumour stomach cells from gastric cancer patients. RESULTS: Kmab34B3 stained testicular germ cells, and tumour cells in nine out of 11 (82%) specimens. In non-tumorous areas, Kmab34B3 stained 13 out of 29 (45%) pyloric gland specimens. Furthermore, Kmab34B3 also stained intestinal metaplasia positive and negative areas. CONCLUSION: Kmab34B3 was able to detect KK-LC-1 protein within tumour cells and the pyloric gland where the gene has been shown to be expressed. Therefore, it might be an attractive tool for detecting KK-LC-1 expression in precancerous and cancerous stomach cells.


Asunto(s)
Anticuerpos Monoclonales , Antígenos de Neoplasias/análisis , Neoplasias Gástricas/inmunología , Estómago/inmunología , Antígenos de Neoplasias/genética , Expresión Génica , Humanos , Metaplasia/inmunología , Lesiones Precancerosas/inmunología , Píloro/inmunología
11.
Nephrology (Carlton) ; 24(11): 1131-1141, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-30582257

RESUMEN

AIM: Metabolic acidosis occurs due to insufficient urinary ammonium excretion as chronic kidney disease (CKD) advances. Because obese subjects tend to have excessive consumption of protein and sodium chloride, they are prone to chronic acid loading and may therefore be predisposed to acid-induced kidney injury. We investigated the involvement of obesity in ammoniagenesis within damaged kidneys. METHODS: In the clinical study, urinary ammonium excretion was compared between 13 normal-weight and 15 overweight/obese CKD outpatients whose creatinine clearance was higher than 25 mL/min. For animal experiments, NH4 Cl was loaded to KKAy/TaJcl (KKAy), a metabolic syndrome model, and control BALB/c mice for 20 weeks. Kidney injury was evaluated through histological analysis and the expression of proinflammatory markers. RESULTS: Urinary ammonium excretion was lower in overweight/obese patients than in normal-weight patients, while intakes of protein and sodium chloride were higher in overweight/obese patients, implying that subclinical metabolic acidosis occurs in overweight/obese patients. The increase in urinary ammonium excretion induced by NH4 Cl loading was attenuated in KKAy mice after 16 weeks, whereas the increase was maintained in BALB/c mice throughout the study period. Histological study and real-time polymerase chain reaction analysis showed proximal tubular injury and enhanced expression levels of neutrophil gelatinase-associated lipocalin (NGAL) protein and messenger RNA, respectively, in KKAy mice but not in BALB/c mice. Finally, urinary NGAL concentration was higher in overweight/obese patients than in normal-weight patients in the early stage of CKD. CONCLUSION: Obesity could facilitate the induction of subclinical metabolic acidosis and acid accumulation in the kidney, which may potentially exacerbate kidney injury in CKD patients.


Asunto(s)
Amoníaco/orina , Túbulos Renales/patología , Obesidad/orina , Sobrepeso/orina , Insuficiencia Renal Crónica/orina , Acidosis/etiología , Ácidos/orina , Anciano , Animales , Femenino , Humanos , Lipocalina 2/orina , Masculino , Ratones , Ratones Endogámicos BALB C , Persona de Mediana Edad
12.
Biochem Biophys Res Commun ; 503(4): 3121-3127, 2018 09 18.
Artículo en Inglés | MEDLINE | ID: mdl-30146260

RESUMEN

Erythropoietin has been thought to be secreted to plasma soon after the production because of the difficulty of Western blot analysis and immunohistochemistry. We established the new methods of Western blot analysis and immunohistochemistry. Using the new methods, we investigated the effects of aldosterone and fludrocortisone, an analogue of aldosterone on erythropoietin mRNA and protein production by the kidneys. Aldosterone stimulated Epo and HIF2α mRNA expressions in tubule suspensions and microdissected medullary thick ascending limbs and outer medullary collecting ducts. Western blot analysis showed a recombinant erythropoietin at 34-45 kDa and kidney erythropoietin at 36-40 and 42 kDa, both of which shifted to 22 kDa by deglycosylation. Erythropoietin protein expression was observed in the nephrons but not in the interstitial cells in control condition. Fludrocortisone stimulated erythropoietin mRNA and protein expressions in the distal nephrons, particularly in the intercalated cells of the collecting ducts. These data show that erythropoietin is produced by the nephrons by the regulation of renin-angiotensin-aldosterone system and not by the renal interstitial cells in control condition.


Asunto(s)
Aldosterona/metabolismo , Eritropoyetina/metabolismo , Fludrocortisona/metabolismo , Túbulos Renales Colectores/metabolismo , Nefronas/metabolismo , Animales , Hipoxia de la Célula , Eritropoyetina/genética , Glicosilación , Túbulos Renales Colectores/citología , Masculino , Nefronas/citología , ARN Mensajero/genética , Ratas Sprague-Dawley , Sistema Renina-Angiotensina , Regulación hacia Arriba
13.
PLoS One ; 12(8): e0184185, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28859164

RESUMEN

Metabolic acidosis often results from chronic kidney disease; in turn, metabolic acidosis accelerates the progression of kidney injury. The mechanisms for how acidosis facilitates kidney injury are not fully understood. To investigate whether low pH directly affects the expression of genes controlling local homeostasis in renal tubules, we performed transcription start site sequencing (TSS-Seq) using IN-IC cells, a cell line derived from rat renal collecting duct intercalated cells, with acid loading for 24 h. Peak calling identified 651 up-regulated and 128 down-regulated TSSs at pH 7.0 compared with those at pH 7.4. Among them, 424 and 38 TSSs were ≥ 1.0 and ≤ -1.0 in Log2 fold change, which were annotated to 193 up-regulated and 34 down-regulated genes, respectively. We used gene ontology analysis and manual curation to profile the up-regulated genes. The analysis revealed that many up-regulated genes are involved in renal fibrosis, implying potential molecular mechanisms induced by metabolic acidosis. To verify the activity of the ubiquitin-proteasome system (UPS), a candidate pathway activated by acidosis, we examined the expression of proteins from cells treated with a proteasome inhibitor, MG132. The expression of ubiquitinated proteins was greater at pH 7.0 than at pH 7.4, suggesting that low pH activates the UPS. The in vivo study demonstrated that acid loading increased the expression of ubiquitin proteins in the collecting duct cells in mouse kidneys. Motif analysis revealed Egr1, the mRNA expression of which was increased at low pH, as a candidate factor that possibly stimulates gene expression in response to low pH. In conclusion, metabolic acidosis can facilitate renal injury and fibrosis during kidney disease by locally activating various pathways in the renal tubules.


Asunto(s)
Acidosis/genética , Lesión Renal Aguda/genética , Insuficiencia Renal Crónica/genética , Sitio de Iniciación de la Transcripción , Acidosis/complicaciones , Acidosis/patología , Lesión Renal Aguda/complicaciones , Lesión Renal Aguda/patología , Animales , Fibrosis/genética , Fibrosis/patología , Regulación de la Expresión Génica , Humanos , Concentración de Iones de Hidrógeno , Riñón/metabolismo , Riñón/patología , Túbulos Renales/metabolismo , Túbulos Renales/patología , Leupeptinas/administración & dosificación , Ratones , Ratas , Insuficiencia Renal Crónica/complicaciones , Insuficiencia Renal Crónica/patología , Transducción de Señal/genética
14.
Intern Med ; 56(17): 2307-2310, 2017 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-28794382

RESUMEN

A 39-year-old man with nephrotic syndrome was admitted due to right dorsal pain. Contrast-enhanced CT led to a diagnosis of renal vein thrombosis and segmental pulmonary thromboembolism. Treatment with heparin and warfarin was started. After 1 month, pulmonary thromboembolism recurred. Warfarin was switched to edoxaban, and steroid therapy was initiated, which led to the remission of nephrotic syndrome and the disappearance of renal vein thrombosis. The efficacy of edoxaban was demonstrated; however, this drug has not been routinely selected for patients with renal disease. Our results suggest that edoxaban is also effective for treating venous thrombosis patients with nephrotic syndrome.


Asunto(s)
Inhibidores del Factor Xa/uso terapéutico , Heparina/uso terapéutico , Síndrome Nefrótico/tratamiento farmacológico , Embolia Pulmonar/tratamiento farmacológico , Piridinas/uso terapéutico , Tiazoles/uso terapéutico , Trombosis de la Vena/tratamiento farmacológico , Warfarina/uso terapéutico , Adulto , Humanos , Masculino , Venas Renales/fisiopatología , Resultado del Tratamiento
15.
In Vivo ; 31(3): 403-407, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28438869

RESUMEN

BACKGROUND/AIM: Our previous study indicated that Kita-kyushu lung cancer antigen-1 (KK-LC-1) is a cancer/testis antigen (CTA) expressed in 82% of gastric cancer cases. Here, we investigated the relationship between KK-LC-1 expression and Helicobacter pylori infection in Japanese patients with gastric cancer. PATIENTS AND METHODS: We examined CTA expression in 25 surgical gastric cancer specimens and anti-H. pylori IgGs in the serum of each patient. RESULTS: KK-LC-1 was expressed in 80% of tumor samples, markedly higher than melanoma antigen gene (MAGE)-A1, MAGE-A3, MAGE-A4, synovial sarcoma, X breakpoint 4 (SSX4) and New York esophageal squamous cell carcinoma-1 (NY-ESO-1). Anti-H. pylori IgG titers from the KK-LC-1-positive patients were significantly higher (67.5±7.6) than those from KK-LC-1-negative patients (15.8±7.5, p<0.01) although there were no significant differences between patients positive and negative for MAGE-A1, -A3 and-A4, SSX4 and NY-ESO-1. CONCLUSION: As far as we are aware, this is the first report of a correlation between a carcinogen and CTA expression in clinical samples. KK-LC-1 was frequently expressed in gastric cancer caused by H. pylori infection. The risk diagnosis for gastric cancer might be more accurate if KK-LC-1 expression status were also considered.


Asunto(s)
Antígenos de Neoplasias/metabolismo , Infecciones por Helicobacter/metabolismo , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/microbiología , Testículo/metabolismo , Adulto , Anciano , Anciano de 80 o más Años , Biomarcadores de Tumor/metabolismo , Femenino , Infecciones por Helicobacter/microbiología , Helicobacter pylori/patogenicidad , Humanos , Inmunoglobulina G/metabolismo , Neoplasias Pulmonares/metabolismo , Masculino , Melanoma/metabolismo , Persona de Mediana Edad , Proteínas de Neoplasias/metabolismo , Pronóstico , Sarcoma Sinovial/metabolismo
16.
Clin Exp Nephrol ; 19(5): 771-82, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25500736

RESUMEN

BACKGROUND: The localization and role of the calcium-sensing receptor (CaSR) along the nephron including the collecting ducts is still open to debate. METHODS: Using the quantitative, highly sensitive in situ hybridization technique and a double-staining immunohistochemistry technique, we investigated the axial distribution and expression of CaSR along the nephron in mice (C57B/6J) treated for 6 days with acid or alkali diets. RESULTS: Under control condition, CaSR was specifically localized in the cortical and medullary thick ascending limb of Henle's loop (CTAL and MTAL), macula densa (MD), distal convoluted tubule (DCT), and CCD (TALs, MD > DCT, CCD). Along the CCD, CaSR was co-localized with an anion exchanger type 4 (AE4), a marker of the basolateral membrane of type-B intercalated cell (IC-B) in mice. On the contrary, CaSR was not detected either in principal cells (PC) or in type-A intercalated cell (IC-A). CaSR expression levels in IC-B significantly (P < 0.005) decreased when mice were fed NH4Cl (acid) diets and increased when animals were given NaHCO3 (alkali) diets. As expected, cell heights of IC-A and IC-B significantly (P < 0.005) increased in the above experimental conditions. Surprisingly, single infusion (ip) of neomycin, an agonist of CaSR, significantly (P < 0.005) increased urinary Ca excretion without further increasing the hourly urine volume and significantly (P < 0.05) decreased urine pH. CONCLUSION: CaSR, cloned from rat kidney, was localized in the basolateral membrane of IC-B and was more expressed during alkali-loading. Its alkali-sensitive expression may promote urinary alkali secretion for body acid-base balance.


Asunto(s)
Túbulos Renales Colectores/metabolismo , Riñón/metabolismo , Receptores Acoplados a Proteínas G/biosíntesis , Animales , Calcio/orina , Tamaño de la Célula , Diuréticos/farmacología , Concentración de Iones de Hidrógeno , Hibridación in Situ , Riñón/citología , Túbulos Renales Colectores/citología , Ratones , Ratones Endogámicos C57BL , Nefronas/metabolismo , Inhibidores de la Síntesis de la Proteína/farmacología , ARN Mensajero/biosíntesis , ARN Mensajero/genética , Receptores Sensibles al Calcio , Receptores Acoplados a Proteínas G/genética
17.
Biochem Biophys Res Commun ; 453(3): 356-61, 2014 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-25265491

RESUMEN

Sodium reabsorption via Na-K-2Cl cotransporter 2 (NKCC2) in the thick ascending limbs has a major role for medullary osmotic gradient and subsequent water reabsorption in the collecting ducts. We investigated intrarenal localization of three isoforms of NKCC2 mRNA expressions and the effects of dehydration on them in rats. To further examine the mechanisms of dehydration, the effects of hyperosmolality on NKCC2 mRNA expression in microdissected renal tubules was studied. RT-PCR and RT-competitive PCR were employed. The expressions of NKCC2a and b mRNA were observed in the cortical thick ascending limbs (CAL) and the distal convoluted tubules (DCT) but not in the medullary thick ascending limbs (MAL), whereas NKCC2f mRNA expression was seen in MAL and CAL. Two-day dehydration did not affect these mRNA expressions. In contrast, hyperosmolality increased NKCC2 mRNA expression in MAL in vitro. Bradykinin dose-dependently decreased NKCC2 mRNA expression in MAL. However, dehydration did not change NKCC2 protein expression in membrane fraction from cortex and outer medulla and in microdissected MAL. These data show that NKCC2a/b and f types are mainly present in CAL and MAL, respectively. Although NKCC2 mRNA expression was stimulated by hyperosmolality in vitro, NKCC2 mRNA and protein expressions were not stimulated by dehydration in vivo. These data suggest the presence of the inhibitory factors for NKCC2 expression in dehydration. Considering the role of NKCC2 for the countercurrent multiplier system, NKCC2f expressed in MAL might be more important than NKCC2a/b.


Asunto(s)
Deshidratación/metabolismo , Riñón/metabolismo , Isoformas de Proteínas/metabolismo , Miembro 1 de la Familia de Transportadores de Soluto 12/metabolismo , Animales , Secuencia de Bases , Bradiquinina/farmacología , Cartilla de ADN , Expresión Génica/efectos de los fármacos , Masculino , Reacción en Cadena de la Polimerasa , Isoformas de Proteínas/genética , ARN Mensajero/genética , Ratas , Ratas Sprague-Dawley , Miembro 1 de la Familia de Transportadores de Soluto 12/genética
18.
Biochem Biophys Res Commun ; 449(2): 222-8, 2014 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-24832733

RESUMEN

Erythropoietin production has been reported to occur in the peritubular interstitial fibroblasts in the kidney. Since the erythropoietin production in the nephron is controversial, we reevaluated the erythropoietin production in the kidney. We examined mRNA expressions of erythropoietin and HIF PHD2 using high-sensitive in situ hybridization system (ISH) and protein expression of HIF PHD2 using immunohistochemistry in the kidney. We further investigated the mechanism of erythropoietin production by hypoxia in vitro using human liver hepatocell (HepG2) and rat intercalated cell line (IN-IC cells). ISH in mice showed mRNA expression of erythropoietin in proximal convoluted tubules (PCTs), distal convoluted tubules (DCTs) and cortical collecting ducts (CCDs) but not in the peritubular cells under normal conditions. Hypoxia induced mRNA expression of erythropoietin largely in peritubular cells and slightly in PCTs, DCTs, and CCDs. Double staining with AQP3 or AE1 indicated that erythropoietin mRNA expresses mainly in ß-intercalated or non α/non ß-intercalated cells of the collecting ducts. Immunohistochemistry in rat showed the expression of HIF PHD2 in the collecting ducts and peritubular cells and its increase by anemia in peritubular cells. In IN-IC cells, hypoxia increased mRNA expression of erythropoietin, erythropoietin concentration in the medium and protein expression of HIF PHD2. These data suggest that erythropoietin is produced by the cortical nephrons mainly in the intercalated cells, but not in the peritubular cells, in normal hematopoietic condition and by mainly peritubular cells in hypoxia, suggesting the different regulation mechanism between the nephrons and peritubular cells.


Asunto(s)
Eritropoyetina/biosíntesis , Nefronas/metabolismo , Animales , Hipoxia de la Célula , Línea Celular , Eritropoyetina/genética , Regulación de la Expresión Génica , Células Hep G2 , Humanos , Prolina Dioxigenasas del Factor Inducible por Hipoxia/genética , Prolina Dioxigenasas del Factor Inducible por Hipoxia/metabolismo , Inmunohistoquímica , Hibridación in Situ , Riñón/citología , Riñón/metabolismo , Ratones , Ratones Endogámicos C57BL , Procolágeno-Prolina Dioxigenasa/genética , Procolágeno-Prolina Dioxigenasa/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Ratas , Ratas Sprague-Dawley , Distribución Tisular
20.
N Engl J Med ; 370(2): 129-38, 2014 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-24401050

RESUMEN

BACKGROUND: In renal Fanconi's syndrome, dysfunction in proximal tubular cells leads to renal losses of water, electrolytes, and low-molecular-weight nutrients. For most types of isolated Fanconi's syndrome, the genetic cause and underlying defect remain unknown. METHODS: We clinically and genetically characterized members of a five-generation black family with isolated autosomal dominant Fanconi's syndrome. We performed genomewide linkage analysis, gene sequencing, biochemical and cell-biologic investigations of renal proximal tubular cells, studies in knockout mice, and functional evaluations of mitochondria. Urine was studied with the use of proton nuclear magnetic resonance ((1)H-NMR) spectroscopy. RESULTS: We linked the phenotype of this family's Fanconi's syndrome to a single locus on chromosome 3q27, where a heterozygous missense mutation in EHHADH segregated with the disease. The p.E3K mutation created a new mitochondrial targeting motif in the N-terminal portion of EHHADH, an enzyme that is involved in peroxisomal oxidation of fatty acids and is expressed in the proximal tubule. Immunocytofluorescence studies showed mistargeting of the mutant EHHADH to mitochondria. Studies of proximal tubular cells revealed impaired mitochondrial oxidative phosphorylation and defects in the transport of fluids and a glucose analogue across the epithelium. (1)H-NMR spectroscopy showed elevated levels of mitochondrial metabolites in urine from affected family members. Ehhadh knockout mice showed no abnormalities in renal tubular cells, a finding that indicates a dominant negative nature of the mutation rather than haploinsufficiency. CONCLUSIONS: Mistargeting of peroxisomal EHHADH disrupts mitochondrial metabolism and leads to renal Fanconi's syndrome; this indicates a central role of mitochondria in proximal tubular function. The dominant negative effect of the mistargeted protein adds to the spectrum of monogenic mechanisms of Fanconi's syndrome. (Funded by the European Commission Seventh Framework Programme and others.).


Asunto(s)
Síndrome de Fanconi/genética , Túbulos Renales Proximales/metabolismo , Mitocondrias/metabolismo , Mutación Missense , Enzima Bifuncional Peroxisomal/genética , Secuencia de Aminoácidos , Animales , Población Negra , Cromosomas Humanos Par 3 , Modelos Animales de Enfermedad , Síndrome de Fanconi/etnología , Femenino , Ligamiento Genético , Humanos , Masculino , Ratones , Ratones Noqueados , Datos de Secuencia Molecular , Linaje , Enzima Bifuncional Peroxisomal/química , Enzima Bifuncional Peroxisomal/metabolismo , Fenotipo , Análisis de Secuencia de ADN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA