Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
BMC Plant Biol ; 24(1): 572, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38890574

RESUMEN

BACKGROUND: Nitrogen (N) availability is crucial in regulating plants' abiotic stress resistance, particularly at the seedling stage. Nevertheless, plant responses to N under salinity conditions may vary depending on the soil's NH4+ to NO3- ratio. METHODS: In this study, we investigated the effects of different NH4+:NO3- ratios (100/0, 0/100, 25/75, 50/50, and 75/25) on the growth and physio-biochemical responses of soybean seedlings grown under controlled and saline stress conditions (0-, 50-, and 100-mM L- 1 NaCl and Na2SO4, at a 1:1 molar ratio). RESULTS: We observed that shoot length, root length, and leaf-stem-root dry weight decreased significantly with increased saline stress levels compared to control. Moreover, there was a significant accumulation of Na+, Cl-, hydrogen peroxide (H2O2), and malondialdehyde (MDA) but impaired ascorbate-glutathione pools (AsA-GSH). They also displayed lower photosynthetic pigments (chlorophyll-a and chlorophyll-b), K+ ion, K+/Na+ ratio, and weakened O2•--H2O2-scavenging enzymes such as superoxide dismutase, catalase, peroxidase, monodehydroascorbate reductase, glutathione reductase under both saline stress levels, while reduced ascorbate peroxidase, and dehydroascorbate reductase under 100-mM stress, demonstrating their sensitivity to a saline environment. Moreover, the concentrations of proline, glycine betaine, total phenolic, flavonoids, and abscisic acid increased under both stresses compared to the control. They also exhibited lower indole acetic acid, gibberellic acid, cytokinins, and zeatine riboside, which may account for their reduced biomass. However, NH4+:NO3- ratios caused a differential response to alleviate saline stress toxicity. Soybean seedlings supplemented with optimal ratios of NH4+:NO3- (T3 = 25:75 and T = 4 50:50) displayed lower Na+ and Cl- and ABA but improved K+ and K+/Na+, pigments, growth hormones, and biomass compared to higher NH4+:NO3- ratios. They also exhibited higher O2•--H2O2-scavenging enzymes and optimized H2O2, MDA, and AsA-GSH pools status in favor of the higher biomass of seedlings. CONCLUSIONS: In summary, the NH4+ and NO3- ratios followed the order of 50:50 > 25:75 > 0:100 > 75:25 > 100:0 for regulating the morpho-physio-biochemical responses in seedlings under SS conditions. Accordingly, we suggest that applying optimal ratios of NH4+ and NO3- (25/75 and 50:50) can improve the resistance of soybean seedlings grown in saline conditions.


Asunto(s)
Antioxidantes , Glycine max , Nitratos , Reguladores del Crecimiento de las Plantas , Tolerancia a la Sal , Plantones , Glycine max/fisiología , Glycine max/efectos de los fármacos , Glycine max/metabolismo , Glycine max/crecimiento & desarrollo , Plantones/fisiología , Plantones/efectos de los fármacos , Plantones/metabolismo , Plantones/crecimiento & desarrollo , Antioxidantes/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Nitratos/metabolismo , Compuestos de Amonio/metabolismo , Estrés Salino , Iones/metabolismo
2.
ACS Omega ; 8(29): 26122-26135, 2023 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-37521660

RESUMEN

Background: Soil salinity negatively impacts agricultural productivity. Consequently, strategies should be developed to inculcate a salinity tolerance in crops for sustainable food production. Growth regulators play a vital role in regulating salinity stress tolerance. Methods: Thus, we examined the effect of exogenous salicylic acid (SA) and alpha-tocopherol (TP) (100 mg/L) on the morphophysio-biochemical responses of two wheat cultivars (Pirsabak-15 and Shankar) to salinity stress (0 and 40 mM). Results: Both Pirsabak-15 and Shankar cultivars were negatively affected by salinity stress. For instance, salinity reduced growth attributes (i.e., leaf fresh and dry weight, leaf moisture content, leaf area ratio, shoot and root dry weight, shoot and root length, as well as root-shoot ratio), pigments (chlorophyll a, chlorophyll a, and carotenoids) but increased hydrogen peroxide (H2O2), malondialdehyde (MDA), and endogenous TP in both cultivars. Among the antioxidant enzymes, salinity enhanced the activity of peroxidase (POD) and polyphenol oxidase (PPO) in Pirsabak-15; glutathione reductase (GR) and PPO in Shankar, while ascorbate peroxidase (APOX) was present in both cultivars. SA and TP could improve the salinity tolerance by improving growth and photosynthetic pigments and reducing MDA and H2O2. In general, the exogenous application did not have a positive effect on antioxidant enzymes; however, it increased PPO in Pirsabak-15 and SOD in the Shankar cultivar. Conclusions: Consequently, we suggest that SA and TP could have enhanced the salinity tolerance of our selected wheat cultivars by modulating their physiological mechanisms in a manner that resulted in improved growth. Future molecular studies can contribute to a better understanding of the mechanisms by which SA and TP regulate the selected wheat cultivars underlying salinity tolerance mechanisms.

3.
Front Plant Sci ; 13: 1018787, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36330265

RESUMEN

Cyperus esculentus L. var. sativus Boeck (commonly called Chufa) is a perennial species that produces nutritious underground tubers and contributes to the diet and health of human worldwide. However, it is salt-sensitive and its adaptation to salinity stress remains an enigma. Naphthaleneacetic acid (NAA) plays a vital role in regulating plant salt stress tolerance. Thus, we aimed to investigate the impact of NAA (150 mg/L) application on growth and physio-biochemical response mechanisms of Chufa plants to different levels of salinity stress (0-, 90-, and 180 mM of alkaline stress ([1:1 ratio of Na2CO3 and NaHCO3]). In response to increasing stress levels, shoot-root growth decreased, whereas malondialdehyde (MDA), hydrogen peroxide (H2O2), osmolytes (soluble protein, proline, and soluble sugars), and activities of superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT) significantly increased. Alkalinity led to significant increase in Na+ and Cl-, but decrease in Mg2+ concentration in both roots and leaves; however, K+ decreased significantly in leaves under both stresses. Additionally, NO 3 - and. levels, nitrate reductase (NR) activities, and glutamate synthase (GOGAT) decreased significantly. However, glutamine synthetase (GS) increased non-significantly at 90 mM but declined at 180 mM. Foliar NAA application reduced Na+ and Cl-, MDA, and H2O2 but increased photosynthetic pigments, K+ and Mg2+, osmolytes, nitrogen (N) metabolism, and upregulating the enzymatic antioxidant system to reduce oxidative stress under alkaline conditions. Hence, our findings manifest that NAA application is an effective strategy that can be utilized to enhance tolerance of chufa plants to alkaline stress. Future studies should explore whether NAA can positively alter the nutrient composition of chufa tubers at deeper molecular levels, which might offer solutions to nutritious problems in developing countries.

4.
Life (Basel) ; 12(7)2022 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-35888073

RESUMEN

Wheat is the most extensively cultivated crop and occupies a central place in human nutrition providing 20% of the daily food calories. This study was conducted to find both T and ψ effects on wheat germination and the cardinal Ts value; a lab experiment was accomplished using HTT models. Cultivars were germinated under different accelerated aging periods (AAP, 0, 24, 48, and 72 h) at each of the following constant Ts of 15, 20, 25, 30, and 35 °C at each of the ψs of 0, -0.05, -0.1, -0.15, and -0.2 MPa. GR, GP, and other germination parameters (GI, GRI, CVG, SVI-I, SVI-II, GE, and MGT) were significantly determined by solute potential, temperature, and reciprocal action in both cultivars (p ≤ 0.01). Depending on the confidence interval of the model co-efficiently between cultivars, there was no significant difference. Hence, the average of cardinal Ts was 15, 20, and 35 °C for the Tb, To, and Tc, respectively, in the control condition (0 MPa). Hydro-time values declined when Ts was raised to To in cultivars, then remained constant at Ts ≥ To (2.4 MPah-1 in Pirsabak 15 and 0.96 MPah-1 in Shahkar). The slope of the relationship between ψb(50) and TTsupra with temperature when Ts is raised above To and reaches 0 at Tc. In conclusion, the assessed parameter values in this study can easily be used in simulation models of wheat germination to quantitatively characterize the physiological status of wheat seed populations at different Ts and ψs.

5.
Plants (Basel) ; 11(5)2022 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-35270123

RESUMEN

Jasmonates (JAs) are lipid-derived compounds that function in plants as key signaling compounds during stressful conditions. This study aimed to examine the effects of exogenous fo-liar-JA application (100 µmol L-1) on the morpho-physiological response of two soybean varieties (parachinar-local and swat-84) grown under different NaCl regimes (0, 40, 80, and 120 mM). Results show that exogenous JA application alone and in combination with salt stress altered the growth and metabolism of both soybeans. For instance, they accumulated significant amounts of Na+ and Cl-, while their K+, Mg2+, Fe2+, Mn2+, B3+, and P3+ contents were low. Further, photosynthetic pigments Chl a and Chl b increased at low concentrations of salt and exogenous JA. Car decreased under both salt and exogenous JA as compared with untreated control. In addition, sugar, phenol, and protein content increased under both salt and exogenous JA application. In contrast, the exogenous JA application alleviated the negative impact of salt stress on the growth and metabolism of both soybeans. Further, the high concentrations of soluble protein and phenol in the leaves of both soybeans may contribute to their ability to adapt to salinity. However, molecular studies are necessary to understand the ameliorative role of exogenous JA in the growth and metabolism of salt-treated young seedlings in both soybean varieties.

6.
Front Plant Sci ; 13: 1081188, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36743556

RESUMEN

Background: Increasing soil salinization has a detrimental effect on agricultural productivity.Therefore, strategies are needed to induce salinity-tolerance in crop species for sustainable foodproduction. γ-aminobutyric acid (GABA) plays a key role in regulating plant salinity stresstolerance. However, it remains largely unknown how mungbean plants (Vigna radiata L.) respondto exogenous GABA under salinity stress. Methods: Thus, we evaluated the effect of exogenous GABA (1.5 mM) on the growth and physiobiochemicalresponse mechanism of mungbean plants to saline stress (0-, 50-, and 100 mM [NaCland Na2SO4, at a 1:1 molar ratio]). Results: Increased saline stress adversely affected mungbean plants' growth and metabolism. Forinstance, leaf-stem-root biomass (34- and 56%, 31- and 53%, and 27- and 56% under 50- and 100mM, respectively]) and chlorophyll concentrations declined. The carotenoid level increased (10%)at 50 mM and remained unaffected at 100 mM. Hydrogen peroxide (H2O2), malondialdehyde(MDA), osmolytes (soluble sugars, soluble proteins, proline), total phenolic content, andenzymatic activities of superoxide dismutase (SOD), ascorbate peroxidase (APX), peroxidase(POD), glutathione reductase (GTR), and polyphenol oxidation (PPO) were significantlyincreased. In leaves, salinity caused a significant increase in Na+ concentration but a decrease inK+ concentration, resulting in a low K+/Na+ concentration (51- and 71% under 50- and 100- mMstress). Additionally, nitrogen concentration and the activities of nitrate reductase (NR) andglutamine synthetase (GS) decreased significantly. The reduction in glutamate synthase (GOGAT)activity was only significant (65%) at 100 mM stress. Exogenous GABA decreased Na+, H2O2,and MDA concentrations but enhanced photosynthetic pigments, K+ and K+/Na+ ratio, Nmetabolism, osmolytes, and enzymatic antioxidant activities, thus reducing salinity-associatedstress damages, resulting in improved growth and biomass. Conclusion: Exogenous GABA may have improved the salinity tolerance of mungbean plants by maintaining their morpho-physiological responses and reducing the accumulation of harmfulsubstances under salinity. Future molecular studies can contribute to a better understanding of themolecular mechanisms by which GABA regulates mungbean salinity tolerance.

7.
PeerJ ; 7: e8191, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31844583

RESUMEN

BACKGROUND: Carbon and nitrogen metabolism need to be highly regulated to achieve cell acclimation to changing environmental conditions. The understanding of physio-biochemical responses of crops to salinity stress could help to stabilize their performance and yield. In this study we have analyzed the roles of photosynthesis, ion physiology and nitrate assimilation toward saline/alkaline stress acclimation in wild and cultivated soybean seedlings. METHODS: Growth and photosynthetic parameters, ion concentrations and the activity of enzymes involved in nitrogen assimilation were determined in seedlings of one wild and one cultivated soybean accession subjected to saline or alkaline stresses. RESULTS: Both saline and alkaline stresses had a negative impact on the growth and metabolism of both wild and cultivated soybean.The growth, photosynthesis, and gas exchange parameters showed a significant decrease in response to increasing salt concentration. Additionally, a significant increase in root Na+ and Cl- concentration was observed. However, photosynthetic performance and ion regulation were higher in wild than in cultivated soybean under saline and alkaline stresses. Nitrate reductase (NR) and the glutamine synthetase/glutamate synthase (GS/GOGAT) cycle showed a significant decrease in leaves of both genotypes. The reduction in the GS/GOGAT cycle was accompanied by high aminating glutamate dehydrogenase (NADH-glutamate dehydrogenase) activity, indicating the assimilation of high levels of NH4 +. A significant increase in the activities of aminating and deaminating enzymes, including glutamate dehydrogenase (GDH), alanine aminotransferase (AlaAT) and aspartate aminotransferase (AspAT), was observed, probably due to the high glutamate demand and maintenance of the Krebs cycle to correct the C: N status. CONCLUSIONS: Cultivated soybean was much more stress sensitive than was the wild soybean. The decrease in growth, photosynthesis, ion regulation and nitrogen assimilation enzymes was greater in cultivated soybean than in wild soybean. The impact of alkaline stress was more pronounced than that of saline stress. Wild soybean regulated the physiological mechanisms of photosynthesis and nitrate assimilation more effectively than did cultivated soybean. The present findings provide a theoretical basis with which to screen and utilize wild and cultivated soybean germplasm for breeding new stress-tolerant soybean.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...