Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 6 de 6
1.
Sensors (Basel) ; 21(2)2021 Jan 08.
Article En | MEDLINE | ID: mdl-33429929

Lindane is documented by the Environmental Protection Agency (EPA) as one of the most toxic registered pesticides. Conventional detection of lindane in the environment requires manual field sampling and complex, time-consuming analytical sample handling relying on skilled labor. In this study, an electrochemical sensing system based on a modified electrode is reported. The system is capable of detecting lindane in aqueous medium in only 20 s. The surface of a conventional carbon electrode is modified with a film of conductive polymer that enables detection of lindane down to 30 nanomolar. The electrode modification procedure is simple and results in a robust sensor that can withstand intensive use. The sensitivity of the sensor is 7.18 µA/µM and the performance was demonstrated in the determination of lindane in spiked ground water. This suggests that the sensor is potentially capable of providing useful readings for decision makers. The rapid and sensitive quantification of lindane in aqueous medium is one step forward to new opportunities for direct, autonomous control of the pesticide level in the environment.

2.
Sensors (Basel) ; 20(8)2020 Apr 15.
Article En | MEDLINE | ID: mdl-32326400

Pesticides are heavily used in agriculture to protect crops from diseases, insects, and weeds. However, only a fraction of the used pesticides reaches the target and the rest slips through the soil, causing the contamination of ground- and surface water resources. Given the emerging interest in the on-site detection of analytes that can replace traditional chromatographic techniques, alternative methods for pesticide measuring have recently encountered remarkable attention. This review gives a focused overview of the literature related to the electrochemical detection of selected pesticides. Here, we focus on the electrochemical detection of three important pesticides; glyphosate, lindane and bentazone using a variety of electrochemical detection techniques, electrode materials, electrolyte media, and sample matrix. The review summarizes the different electrochemical studies and provides an overview of the analytical performances reported such as; the limits of detection and linearity range. This article highlights the advancements in pesticide detection of the selected pesticides using electrochemical methods and point towards the challenges and needed efforts to achieve electrochemical detection suitable for on-site applications.

3.
Environ Int ; 129: 400-407, 2019 08.
Article En | MEDLINE | ID: mdl-31152981

Bentazone is one of the most problematic pesticides polluting groundwater resources. It is on the list of pesticides that are mandatory to analyze at water work controls. The current pesticide measuring approach includes manual water sampling and time-consuming chromatographical quantification of the bentazone content at centralized laboratories. Here, we report the use of an electrochemical approach for analytical determination of bentazone that takes 10 s. The electrochemical electrodes were manually screen printed, resulting in the low-cost fabrication of the sensors. The current response was linearly proportional to the bentazone concentration with a R2 ~ 0.999. We demonstrated a sensitivity of 0.0987 µA/µM and a limit of detection of 0.034 µM, which is below the U.S. Health Advisory level. Furthermore, the sensors have proved to be reusable and stable with a drop of only 2% after 15 times reuse. The sensors have been applied to successfully quantify bentazone spiked in real groundwater and lake water. The sensing method presented here is a step towards on-site application of electrochemical detection of pesticides in water sources.


Benzothiadiazines/analysis , Electrodes , Environmental Monitoring/methods , Groundwater/chemistry , Pesticides/analysis , Water Pollutants, Chemical/analysis , Carbon/chemistry , Sensitivity and Specificity
4.
Sensors (Basel) ; 18(9)2018 Sep 05.
Article En | MEDLINE | ID: mdl-30189680

Glyphosate (Gly) is one of the most problematic pesticides that repeatedly appears in drinking water. Continuous on-site detection of Gly in water supplies can provide an early warning in incidents of contamination, before the pesticide reaches the drinking water. Here, we report the first direct detection of Gly in tap water with electrochemical sensing. Gold working electrodes were used to detect the pesticide in spiked tap water without any supporting electrolyte, sample pretreatment or electrode modifications. Amperometric measurements were used to quantify Gly to a limit of detection of 2 µM, which is below the regulation limit of permitted contamination of drinking water in the United States. The quantification of Gly was linearly proportional with the measured signal. The selectivity of this method was evaluated by applying the same technique on a Gly Metabolite, AMPA, and on another pesticide, omethoate, with a chemical structure similar to Gly. The testing revealed no interfering electrochemical activity at the potential range used for Gly detection. The simple detection of Gly presented in this work may lead to direct on-site monitoring of Gly contamination at drinking water sources.


Analytic Sample Preparation Methods , Drinking Water/chemistry , Glycine/analogs & derivatives , Pesticides/analysis , Water Pollutants, Chemical/analysis , Glycine/analysis , Time Factors , Water Supply , Glyphosate
5.
PLoS One ; 13(3): e0194157, 2018.
Article En | MEDLINE | ID: mdl-29566025

Pyocyanin is a toxin produced by Pseudomonas aeruginosa. Here we describe a novel paper-based electrochemical sensor for pyocyanin detection, manufactured with a simple and inexpensive approach based on electrode printing on paper. The resulting sensors constitute an effective electrochemical method to quantify pyocyanin in bacterial cultures without the conventional time consuming pretreatment of the samples. The electrochemical properties of the paper-based sensors were evaluated by ferri/ferrocyanide as a redox mediator, and showed reliable sensing performance. The paper-based sensors readily allow for the determination of pyocyanin in bacterial cultures with high reproducibility, achieving a limit of detection of 95 nM and a sensitivity of 4.30 µA/µM in standard culture media. Compared to the similar commercial ceramic based sensors, it is a 2.3-fold enhanced performance. The simple in-house fabrication of sensors for pyocyanin quantification allows researchers to understand in vitro adaptation of P. aeruginosa infections via rapid screenings of bacterial cultures that otherwise are expensive and time-consuming.


Biosensing Techniques , Paper , Pseudomonas Infections , Pseudomonas aeruginosa , Pyocyanine , Virulence Factors , Humans , Pseudomonas Infections/diagnosis , Pseudomonas Infections/metabolism , Pseudomonas aeruginosa/metabolism , Pseudomonas aeruginosa/pathogenicity , Pyocyanine/analysis , Pyocyanine/metabolism , Sensitivity and Specificity , Virulence Factors/analysis , Virulence Factors/metabolism
6.
Bioresour Technol ; 123: 177-83, 2012 Nov.
Article En | MEDLINE | ID: mdl-22940316

Microbial fuel cells (MFCs) have applications possibilities for wastewater treatment, biotransformation, and biosensor, but the development of highly efficient electrode materials is critical for enhancing the power generation. Two types of electrodes modified with nanoparticles or grass-like nanostructure (termed nanograss) were used. A two-chamber MFC with plain silicium electrodes achieved a maximum power density of 0.002mW/m(2), while an electrode with nanograss of titanium and gold deposited on one side gave a maximum power density of 2.5mW/m(2). Deposition of titanium and gold on both sides of plain silicium showed a maximum power density of 86.0mW/m(2). Further expanding the surface area of carbon-paper electrodes with gold nanoparticles resulted in a maximum stable power density of 346.9mW/m(2) which is 2.9 times higher than that achieved with conventional carbon-paper. These results show that fabrication of electrodes with nanograss could be an efficient way to increase the power generation.


Bioelectric Energy Sources , Electricity , Gold/chemistry , Metal Nanoparticles/chemistry , Poaceae/chemistry , Carbon/analysis , Copper/chemistry , Electrodes , Metal Nanoparticles/ultrastructure , Silicon/chemistry , Surface Properties , Titanium/chemistry
...