Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 1 de 1
1.
Adv Pharmacol ; 77: 241-80, 2016.
Article En | MEDLINE | ID: mdl-27451100

During capillary network formation, ECs establish interconnecting tubes with defined lumens that reside within vascular guidance tunnels (physical spaces generated during EC tubulogenesis). Pericytes are recruited to EC tubes within these tunnels and capillary basement membrane deposition occurs to facilitate tube maturation. Here, we discuss molecular mechanisms controlling EC tubulogenesis demonstrating the involvement of integrins, MT1-MMP, extracellular matrix, Cdc42, Rac1, Rac2, k-Ras, Rap1b, and key downstream effectors including Pak2, Pak4, IQGAP1, MRCKß, and Rasip1. These molecules activate kinase cascades controlling EC tube formation, in conjunction with growth factor receptor signaling, which involve PKCɛ, Src family, Raf, Mek, and Erk kinases. These molecules and signaling cascades stimulate EC lumen and tube formation by: regulating MT-MMP-dependent lumen expansion and vascular guidance tunnel formation; generation of intracellular vacuoles/vesicles to create EC apical membranes; and establishing cytoskeletal polarity with acetylated tubulin distributed subapically (and F-actin basally) to facilitate vacuole trafficking/fusion in a polarized, perinuclear region. Using defined serum-free models, we have demonstrated that human EC tubulogenesis and EC-pericyte tube coassembly requires five exogenously applied growth factors which are SCF, IL-3, SDF-1α, FGF-2, and insulin (Factors). Also, we have demonstrated that EC-derived PDGF-BB and HB-EGF are necessary for pericytes to proliferate, recruit to tubes, and induce basement membrane assembly. Finally, we have shown that VEGF fails to directly stimulate EC tubulogenesis. In contrast, it acts as an upstream EC primer of downstream "Factor"-induced tubulogenic and EC-pericyte tube coassembly by upregulating c-Kit, IL-3Rα, and CXCR4 as well as PDGF-BB and HB-EGF expression.


Extracellular Matrix/metabolism , Morphogenesis/physiology , Pericytes/metabolism , Animals , Becaplermin , Humans , Proto-Oncogene Proteins c-sis/metabolism , Signal Transduction/physiology
...