Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 3 de 3
1.
J Exp Clin Cancer Res ; 42(1): 106, 2023 Apr 28.
Article En | MEDLINE | ID: mdl-37118819

BACKGROUND: The malaria protein VAR2CSA binds oncofetal chondroitin sulfate (ofCS), a unique chondroitin sulfate, expressed on almost all mammalian cancer cells. Previously, we produced a bispecific construct targeting ofCS and human T cells based on VAR2CSA and anti-CD3 (V-aCD3Hu). V-aCD3Hu showed efficacy against xenografted tumors in immunocompromised mice injected with human immune cells at the tumor site. However, the complex effects potentially exerted by the immune system as a result of the treatment cannot occur in mice without an immune system. Here we investigate the efficacy of V-aCD3Mu as a monotherapy and combined with immune checkpoint inhibitors in mice with a fully functional immune system. METHODS: We produced a bispecific construct consisting of a recombinant version of VAR2CSA coupled to an anti-murine CD3 single-chain variable fragment. Flow cytometry and ELISA were used to check cell binding capabilities and the therapeutic effect was evaluated in vitro in a killing assay. The in vivo efficacy of V-aCD3Mu was then investigated in mice with a functional immune system and established or primary syngeneic tumors in the immunologically "cold" 4T1 mammary carcinoma, B16-F10 malignant melanoma, the pancreatic KPC mouse model, and in the immunologically "hot" CT26 colon carcinoma model. RESULTS: V-aCD3Mu had efficacy as a monotherapy, and the combined treatment of V-aCD3Mu and an immune checkpoint inhibitor showed enhanced effects resulting in the complete elimination of solid tumors in the 4T1, B16-F10, and CT26 models. This anti-tumor effect was abscopal and accompanied by a systemic increase in memory and activated cytotoxic and helper T cells. The combined treatment also led to a higher percentage of memory T cells in the tumor without an increase in regulatory T cells. In addition, we observed partial protection against re-challenge in a melanoma model and full protection in a breast cancer model. CONCLUSIONS: Our findings suggest that V-aCD3Mu combined with an immune checkpoint inhibitor renders immunologically "cold" tumors "hot" and results in tumor elimination. Taken together, these data provide proof of concept for the further clinical development of V-aCD3 as a broad cancer therapy in combination with an immune checkpoint inhibitor.


Antibodies, Bispecific , Carcinoma , Melanoma, Experimental , Humans , Mice , Animals , Chondroitin Sulfates/pharmacology , Chondroitin Sulfates/metabolism , Immunologic Memory , Immune Checkpoint Inhibitors , Melanoma, Experimental/drug therapy , Carcinoma/drug therapy , Antibodies, Bispecific/pharmacology , Antibodies, Bispecific/therapeutic use , Cell Line, Tumor , Mammals/metabolism
2.
Cell Death Dis ; 12(4): 353, 2021 04 06.
Article En | MEDLINE | ID: mdl-33824272

As an immune evasion and survival strategy, the Plasmodium falciparum malaria parasite has evolved a protein named VAR2CSA. This protein mediates sequestration of infected red blood cells in the placenta through the interaction with a unique carbohydrate abundantly and exclusively present in the placenta. Cancer cells were found to share the same expression of this distinct carbohydrate, termed oncofetal chondroitin sulfate on their surface. In this study we have used a protein conjugation system to produce a bispecific immune engager, V-aCD3, based on recombinant VAR2CSA as the cancer targeting moiety and an anti-CD3 single-chain variable fragment linked to a single-chain Fc as the immune engager. Conjugation of these two proteins resulted in a single functional moiety that induced immune mediated killing of a broad range of cancer cells in vitro and facilitated tumor arrest in an orthotopic bladder cancer xenograft model.


Erythrocytes/metabolism , Malaria, Falciparum/metabolism , Protozoan Proteins/metabolism , Chondroitin Sulfates/immunology , Chondroitin Sulfates/metabolism , Female , Humans , Malaria/immunology , Malaria/metabolism , Malaria, Falciparum/immunology , Placenta/metabolism , Plasmodium falciparum/metabolism , Pregnancy , Protozoan Proteins/immunology , Recombinant Proteins/metabolism
3.
Eur Urol ; 72(1): 142-150, 2017 07.
Article En | MEDLINE | ID: mdl-28408175

BACKGROUND: Although cisplatin-based neoadjuvant chemotherapy (NAC) improves survival of unselected patients with muscle-invasive bladder cancer (MIBC), only a minority responds to therapy and chemoresistance remains a major challenge in this disease setting. OBJECTIVE: To investigate the clinical significance of oncofetal chondroitin sulfate (ofCS) glycosaminoglycan chains in cisplatin-resistant MIBC and to evaluate these as targets for second-line therapy. DESIGN, SETTING, AND PARTICIPANTS: An ofCS-binding recombinant VAR2CSA protein derived from the malaria parasite Plasmodium falciparum (rVAR2) was used as an in situ, in vitro, and in vivo ofCS-targeting reagent in cisplatin-resistant MIBC. The ofCS expression landscape was analyzed in two independent cohorts of matched pre- and post-NAC-treated MIBC patients. INTERVENTION: An rVAR2 protein armed with cytotoxic hemiasterlin compounds (rVAR2 drug conjugate [VDC] 886) was evaluated as a novel therapeutic strategy in a xenograft model of cisplatin-resistant MIBC. OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS: Antineoplastic effects of targeting ofCS. RESULTS AND LIMITATIONS: In situ, ofCS was significantly overexpressed in residual tumors after NAC in two independent patient cohorts (p<0.02). Global gene-expression profiling and biochemical analysis of primary tumors and cell lines revealed syndican-1 and chondroitin sulfate proteoglycan 4 as ofCS-modified proteoglycans in MIBC. In vitro, ofCS was expressed on all MIBC cell lines tested, and VDC886 eliminated these cells in the low-nanomolar IC50 concentration range. In vivo, VDC886 effectively retarded growth of chemoresistant orthotopic bladder cancer xenografts and prolonged survival (p=0.005). The use of cisplatin only for the generation of chemoresistant xenografts are limitations of our animal model design. CONCLUSIONS: Targeting ofCS provides a promising second-line treatment strategy in cisplatin-resistant MIBC. PATIENT SUMMARY: Cisplatin-resistant bladder cancer overexpresses particular sugar chains compared with chemotherapy-naïve bladder cancer. Using a recombinant protein from the malaria parasite Plasmodium falciparum, we can target these sugar chains, and our results showed a significant antitumor effect in cisplatin-resistant bladder cancer. This novel treatment paradigm provides therapeutic access to bladder cancers not responding to cisplatin.


Antigens, Protozoan/pharmacology , Antineoplastic Agents/therapeutic use , Biomarkers, Tumor/metabolism , Chondroitin Sulfates/metabolism , Cisplatin/therapeutic use , Drug Resistance, Neoplasm/drug effects , Oligopeptides/pharmacology , Urinary Bladder Neoplasms/drug therapy , Animals , Antigens, Protozoan/metabolism , Antineoplastic Agents/adverse effects , British Columbia , Cell Death/drug effects , Cell Line, Tumor , Cisplatin/adverse effects , Dose-Response Relationship, Drug , Europe , Gene Expression Regulation, Neoplastic/drug effects , Humans , Inhibitory Concentration 50 , Kaplan-Meier Estimate , Mice , Time Factors , Treatment Outcome , Tumor Burden/drug effects , Urinary Bladder Neoplasms/metabolism , Urinary Bladder Neoplasms/mortality , Urinary Bladder Neoplasms/pathology , Xenograft Model Antitumor Assays
...