Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 23
1.
Sci Rep ; 12(1): 6876, 2022 Apr 27.
Article En | MEDLINE | ID: mdl-35477961

High energy density physics is the field of physics dedicated to the study of matter and plasmas in extreme conditions of temperature, densities and pressures. It encompasses multiple disciplines such as material science, planetary science, laboratory and astrophysical plasma science. For the latter, high energy density states can be accompanied by extreme radiation environments and super-strong magnetic fields. The creation of high energy density states in the laboratory consists in concentrating/depositing large amounts of energy in a reduced mass, typically solid material sample or dense plasma, over a time shorter than the typical timescales of heat conduction and hydrodynamic expansion. Laser-generated, high current-density ion beams constitute an important tool for the creation of high energy density states in the laboratory. Focusing plasma devices, such as cone-targets are necessary in order to focus and direct these intense beams towards the heating sample or dense plasma, while protecting the proton generation foil from the harsh environments typical of an integrated high-power laser experiment. A full understanding of the ion beam dynamics in focusing devices is therefore necessary in order to properly design and interpret the numerous experiments in the field. In this work, we report a detailed investigation of large-scale, kilojoule-class laser-generated ion beam dynamics in focusing devices and we demonstrate that high-brilliance ion beams compress magnetic fields to amplitudes exceeding tens of kilo-Tesla, which in turn play a dominant role in the focusing process, resulting either in a worsening or enhancement of focusing capabilities depending on the target geometry.

2.
Nat Commun ; 10(1): 2995, 2019 Jul 05.
Article En | MEDLINE | ID: mdl-31278266

Increasing the laser energy absorption into energetic particle beams represents a longstanding quest in intense laser-plasma physics. During the interaction with matter, part of the laser energy is converted into relativistic electron beams, which are the origin of secondary sources of energetic ions, γ-rays and neutrons. Here we experimentally demonstrate that using multiple coherent laser beamlets spatially and temporally overlapped, thus producing an interference pattern in the laser focus, significantly improves the laser energy conversion efficiency into hot electrons, compared to one beam with the same energy and nominal intensity as the four beamlets combined. Two-dimensional particle-in-cell simulations support the experimental results, suggesting that beamlet interference pattern induces a periodical shaping of the critical density, ultimately playing a key-role in enhancing the laser-to-electron energy conversion efficiency. This method is rather insensitive to laser pulse contrast and duration, making this approach robust and suitable to many existing facilities.

3.
Rev Sci Instrum ; 88(7): 075103, 2017 Jul.
Article En | MEDLINE | ID: mdl-28764534

Infrared (IR) heating processes have been studied to form a deuterium layer in an inertial confinement fusion target. To understand the relationship between the IR intensity and the fuel layering time constant, we have developed a new method to assess the IR intensity during irradiation. In our method, a glass flask acting as a dummy target is filled with liquid hydrogen (LH2) and is then irradiated with 2-µm light. The IR intensity is subsequently calculated from the time constant of the LH2 evaporation rate. Although LH2 evaporation is also caused by the heat inflow from the surroundings and by the background heat, the evaporation rate due to IR heating can be accurately determined by acquiring the time constant with and without irradiation. The experimentally measured IR intensity is 0.66 mW/cm2, which agrees well with a value estimated by considering the IR photon energy balance. Our results suggest that the present method can be used to measure the IR intensity inside a cryogenic system during IR irradiation of laser fusion targets.

4.
Sci Rep ; 7: 42451, 2017 02 13.
Article En | MEDLINE | ID: mdl-28211913

Using one of the world most powerful laser facility, we demonstrate for the first time that high-contrast multi-picosecond pulses are advantageous for proton acceleration. By extending the pulse duration from 1.5 to 6 ps with fixed laser intensity of 1018 W cm-2, the maximum proton energy is improved more than twice (from 13 to 33 MeV). At the same time, laser-energy conversion efficiency into the MeV protons is enhanced with an order of magnitude, achieving 5% for protons above 6 MeV with the 6 ps pulse duration. The proton energies observed are discussed using a plasma expansion model newly developed that takes the electron temperature evolution beyond the ponderomotive energy in the over picoseconds interaction into account. The present results are quite encouraging for realizing ion-driven fast ignition and novel ion beamlines.

5.
Rev Sci Instrum ; 85(11): 11E126, 2014 Nov.
Article En | MEDLINE | ID: mdl-25430305

The characteristics of oxygen-enriched liquid scintillators with very low afterglow are investigated and optimized for application to a single-hit neutron spectrometer for fast ignition experiments. It is found that 1,2,4-trimethylbenzene has better characteristics as a liquid scintillator solvent than the conventional solvent, p-xylene. In addition, a benzophenon-doped BBQ liquid scintillator is shown to demonstrate very rapid time response, and therefore has potential for further use in neutron diagnostics with fast time resolution.

6.
Osteoporos Int ; 23(2): 695-703, 2012 Feb.
Article En | MEDLINE | ID: mdl-21394496

SUMMARY: A 36-month observational study compared the incidence of unaffected side hip fracture in Japanese female osteoporosis patients with a history of hip fracture between 173 patients receiving risedronate and 356 risedronate-untreated controls. New hip fractures were significantly less frequent in the risedronate group, suggesting a preventive effect in high-risk patients. INTRODUCTION: The purpose of this study was to investigate the preventive effect of risedronate on second hip fracture immediately following a first hip fracture in Japanese female osteoporosis patients with unilateral hip fracture. METHODS: We conducted a prospective matched cohort study in 184 patients treated with risedronate and 445 patients not receiving risedronate after discharge from hospital. Both groups were followed-up for 36 months, and the incidence of unaffected side hip fracture and the frequency of adverse events were assessed. RESULTS: Efficacy could be investigated in 173 patients from the risedronate group and 356 patients from the control group. Hip fracture was detected in 5 and 32 patients, respectively. Kaplan-Meier estimates of the 36-month fracture incidence were 4.3% in the risedronate group and 13.1% in the control group (P = 0.010, log-rank test). The hazard ratios (95% confidence intervals) obtained by univariate and multivariate analysis were 0.310 (0.121-0.796) and 0.218 (0.074-0.639), respectively, indicating a significantly lower incidence of unaffected side hip fracture in the risedronate group. Adverse events occurred in 38 patients (48 events) from the risedronate group and 94 patients (108 events) from the control group, with serious adverse events in 21 patients (26 events) and 78 patients (88 events), respectively. CONCLUSIONS: No significant differences were observed between the two groups. The incidence of unaffected side hip fracture was significantly lower in the risedronate group. Accordingly, risedronate may have a preventive effect on hip fracture in high-risk Japanese female osteoporosis patients for fracture with a history of unilateral hip fracture.


Bone Density Conservation Agents/therapeutic use , Etidronic Acid/analogs & derivatives , Hip Fractures/prevention & control , Osteoporotic Fractures/prevention & control , Aged , Aged, 80 and over , Bone Density/drug effects , Bone Density Conservation Agents/adverse effects , Epidemiologic Methods , Etidronic Acid/adverse effects , Etidronic Acid/therapeutic use , Female , Hip Fractures/etiology , Hip Fractures/physiopathology , Humans , Lumbar Vertebrae/physiopathology , Medication Adherence , Osteoporosis, Postmenopausal/complications , Osteoporosis, Postmenopausal/drug therapy , Osteoporosis, Postmenopausal/physiopathology , Osteoporotic Fractures/etiology , Osteoporotic Fractures/physiopathology , Risedronic Acid , Secondary Prevention , Treatment Outcome
7.
Rev Sci Instrum ; 81(10): 10D303, 2010 Oct.
Article En | MEDLINE | ID: mdl-21033829

A custom developed (6)Li glass scintillator (APLF80+3Pr) for down-scattered neutron diagnostics in inertial confinement fusion experiments is presented. (6)Li provides an enhanced sensitivity for down-scattered neutrons in DD fusion and its experimentally observed 5-6 ns response time fulfills the requirement for down-scattered neutron detectors. A time-of-flight detector operating in the current mode using the APLF80+3Pr was designed and its feasibility observing down-scattered neutrons was demonstrated. Furthermore, a prototype design for a down-scattered neutron imaging detector was also demonstrated. This material promises viability as a future down-scattered neutron detector for the National Ignition Facility.

8.
Phys Rev Lett ; 102(23): 235002, 2009 Jun 12.
Article En | MEDLINE | ID: mdl-19658942

We performed integrated experiments on impact ignition, in which a portion of a deuterated polystyrene (CD) shell was accelerated to about 600 km/s and was collided with precompressed CD fuel. The kinetic energy of the impactor was efficiently converted into thermal energy generating a temperature of about 1.6 keV. We achieved a two-order-of-magnitude increase in the neutron yield by optimizing the timing of the impact collision, demonstrating the high potential of impact ignition for fusion energy production.

9.
Phys Rev Lett ; 102(4): 045009, 2009 Jan 30.
Article En | MEDLINE | ID: mdl-19257436

Interactions between a relativistic-intensity laser pulse and a cone-wire target are studied by changing the focusing point of the pulse. The pulse, when focused on the sidewall of the cone, produced superthermal electrons with an energy >10 MeV, whereas less energetic electrons approximately 1 MeV were produced by the pulse when focused on the cone tip. Efficient heating of the wire was indicated by significant neutron signals observed when the pulse was focused on the tip. Particle-in-cell simulation results show reduced heating of the wire due to energetic electrons produced by specularly reflected light at the sidewall.

10.
Phys Rev Lett ; 100(16): 165001, 2008 Apr 25.
Article En | MEDLINE | ID: mdl-18518210

We produced cylindrically imploded plasmas, which have the same density-radius product of the imploded plasma rhoR with the compressed core in the fast ignition experiment and demonstrated efficient fast heating of cylindrically imploded plasmas with an ultraintense laser light. The coupling efficiency from the laser to the imploded column was 14%-21%, implying strong collimation of energetic electrons over a distance of 300 microm of the plasma. Particle-in-cell simulation shows confinement of the energetic electrons by self-generated magnetic and electrostatic fields excited along the imploded plasmas, and the efficient fast heating in the compressed region.

11.
Phys Rev E Stat Nonlin Soft Matter Phys ; 76(6 Pt 2): 066403, 2007 Dec.
Article En | MEDLINE | ID: mdl-18233928

We report an experimental observation suggesting plasma channel formation by focusing a relativistic laser pulse into a long-scale-length preformed plasma. The channel direction coincides with the laser axis. Laser light transmittance measurement indicates laser channeling into the high-density plasma with relativistic self-focusing. A three-dimensional particle-in-cell simulation reproduces the plasma channel and reveals that the collimated hot-electron beam is generated along the laser axis in the laser channeling. These findings hold the promising possibility of fast heating a dense fuel plasma with a relativistic laser pulse.

12.
Phys Rev Lett ; 96(25): 255006, 2006 Jun 30.
Article En | MEDLINE | ID: mdl-16907316

We propose a foam cone-in-shell target design aiming at optimum hot electron production for the fast ignition. A thin low-density foam is proposed to cover the inner tip of a gold cone inserted in a fuel shell. An intense laser is then focused on the foam to generate hot electrons for the fast ignition. Element experiments demonstrate increased laser energy coupling efficiency into hot electrons without increasing the electron temperature and beam divergence with foam coated targets in comparison with solid targets. This may enhance the laser energy deposition in the compressed fuel plasma.

13.
Phys Rev E Stat Nonlin Soft Matter Phys ; 73(4 Pt 2): 047401, 2006 Apr.
Article En | MEDLINE | ID: mdl-16711961

In this paper we present Hugoniot data for plastic foams obtained with laser-driven shocks. Relative equation-of-state data for foams were obtained using Al as a reference material. The diagnostics consisted in the detection of shock breakout from double layer Al/foam targets. The foams [poly(4-methyl-1-pentene) with density 130 > rho > 60 mg/cm3] were produced at the Institute of Laser Engineering of Osaka University. The experiment was performed using the Prague PALS iodine laser working at 0.44 microm wavelength and irradiances up to a few 10(14) W/cm2. Pressures as high as 3.6 Mbar (previously unreached for such low-density materials) where generated in the foams. Samples with four different values of initial density were used, in order to explore a wider region of the phase diagram. Shock acceleration when the shock crosses the Al/foam interface was also measured.

14.
Phys Rev E Stat Nonlin Soft Matter Phys ; 70(4 Pt 2): 046414, 2004 Oct.
Article En | MEDLINE | ID: mdl-15600537

Ion-acceleration processes have been studied in ultraintense laser plasma interactions for normal incidence irradiation of solid deuterated targets via neutron spectroscopy. The experimental neutron spectra strongly suggest that the ions are preferentially accelerated radially, rather than into the bulk of the material from three-dimensional Monte Carlo fitting of the neutron spectra. Although the laser system has a 10(-7) contrast ratio, a two-dimensional magnetic hydrodynamics simulation shows that the laser pedestal generates a 10 mum scale length in the coronal plasma with a 3 mum scale-length plasma near the critical density. Two-dimensional particle-in-cell simulations, incorporating this realistic density profile, indicate that the acceleration of the ions is caused by a collisionless shock formation. This has implications for modeling energy transport in solid density plasmas as well as cone-focused fast ignition using the next generation PW lasers currently under construction.

15.
Nature ; 432(7020): 1005-8, 2004 Dec 23.
Article En | MEDLINE | ID: mdl-15616556

The development of ultra-intense lasers has facilitated new studies in laboratory astrophysics and high-density nuclear science, including laser fusion. Such research relies on the efficient generation of enormous numbers of high-energy charged particles. For example, laser-matter interactions at petawatt (10(15) W) power levels can create pulses of MeV electrons with current densities as large as 10(12) A cm(-2). However, the divergence of these particle beams usually reduces the current density to a few times 10(6) A cm(-2) at distances of the order of centimetres from the source. The invention of devices that can direct such intense, pulsed energetic beams will revolutionize their applications. Here we report high-conductivity devices consisting of transient plasmas that increase the energy density of MeV electrons generated in laser-matter interactions by more than one order of magnitude. A plasma fibre created on a hollow-cone target guides and collimates electrons in a manner akin to the control of light by an optical fibre and collimator. Such plasma devices hold promise for applications using high energy-density particles and should trigger growth in charged particle optics.

16.
Phys Rev Lett ; 92(16): 165001, 2004 Apr 23.
Article En | MEDLINE | ID: mdl-15169237

Hot electrons and optical emission are measured from the rear surface of a metallic foil. The spectra of the optical emission in the near infrared region have a sharp spike around the wavelength of the incident laser pulse. The optical emission is ascribed to coherent transition radiation due to microbunching in the hot electron beam. It is found that the optical emission closely correlates with the hot electrons accelerated in resonance absorption.

17.
Phys Rev E Stat Nonlin Soft Matter Phys ; 69(2 Pt 2): 026401, 2004 Feb.
Article En | MEDLINE | ID: mdl-14995560

Energetic proton generation in low-density plastic (C5H10) foam by intense femtosecond laser pulse irradiation has been studied experimentally and numerically. Plastic foam was successfully produced by a sol-gel method, achieving an average density of 10 mg/cm(3). The foam target was irradiated by 100 fs pulses of a laser intensity 1 x 10(18) W/cm(2). A plateau structure extending up to 200 keV was observed in the energy distribution of protons generated from the foam target, with the plateau shape well explained by Coulomb explosion of lamella in the foam. The laser-foam interaction and ion generation were studied qualitatively by two-dimensional particle-in-cell simulations, which indicated that energetic protons are mainly generated by the Coulomb explosion. From the results, the efficiency of energetic ion generation in a low-density foam target by Coulomb explosion is expected to be higher than in a gas-cluster target.

18.
Phys Rev E Stat Nonlin Soft Matter Phys ; 65(3 Pt 2B): 036413, 2002 Mar.
Article En | MEDLINE | ID: mdl-11909268

We report the first precise spectral measurement of fast neutrons produced in a deuterated plastic target irradiated by an ultraintense sub-picosecond laser pulse. The 500-fs, 50-J, 1054-nm laser pulse was focused on the deuterated polystyrene target with an intensity of 2 x 10(19) W/cm(2). The neutron spectra were observed at 55 degrees and 90 degrees to the rear target normal. The neutron emission was 7 x 10(4) per steradian for each detector. The observed neutron spectra prove the acceleration of deuterons and neutron production by d(d,n)3He reactions in the target. The neutron spectra were compared with Monte Carlo simulation results and the deuteron's directional anisotropy and energy spectrum were studied. We conclude that 2% of the laser energy was converted to deuterons, which has an energy range of 30 keV up to 3 MeV.

19.
Phys Rev E Stat Nonlin Soft Matter Phys ; 64(4 Pt 2): 047402, 2001 Oct.
Article En | MEDLINE | ID: mdl-11690182

We present x-ray shadowgraphs from a high Mach number ( approximately 20) laboratory environment that simulate outward flowing ejecta matter from supernovae that interact with ambient cloud matter. Using a laser-plastic foil interaction, we generate a "complex" blast wave (a supersonic flow containing forward and reverse shock waves and a contact discontinuity between them) that interacts with a high-density (100 times ambient) sphere. The experimental results, including vorticity localization, compare favorably with two-dimensional axisymmetric hydrodynamic simulations.

20.
Nature ; 412(6849): 798-802, 2001 Aug 23.
Article En | MEDLINE | ID: mdl-11518960

Modern high-power lasers can generate extreme states of matter that are relevant to astrophysics, equation-of-state studies and fusion energy research. Laser-driven implosions of spherical polymer shells have, for example, achieved an increase in density of 1,000 times relative to the solid state. These densities are large enough to enable controlled fusion, but to achieve energy gain a small volume of compressed fuel (known as the 'spark') must be heated to temperatures of about 108 K (corresponding to thermal energies in excess of 10 keV). In the conventional approach to controlled fusion, the spark is both produced and heated by accurately timed shock waves, but this process requires both precise implosion symmetry and a very large drive energy. In principle, these requirements can be significantly relaxed by performing the compression and fast heating separately; however, this 'fast ignitor' approach also suffers drawbacks, such as propagation losses and deflection of the ultra-intense laser pulse by the plasma surrounding the compressed fuel. Here we employ a new compression geometry that eliminates these problems; we combine production of compressed matter in a laser-driven implosion with picosecond-fast heating by a laser pulse timed to coincide with the peak compression. Our approach therefore permits efficient compression and heating to be carried out simultaneously, providing a route to efficient fusion energy production.

...