Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Immunol ; 10: 1318, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31275307

RESUMEN

African swine fever (ASF) is a lethal haemorrhagic disease of domestic pigs for which there is no vaccine. Strains of the virus with reduced virulence can provide protection against related virulent strains of ASFV, but protection is not 100% and there are concerns about the safety profile of such viruses. However, they provide a useful tool for understanding the immune response to ASFV and previous studies using the low virulent isolate OUR T88/3 have shown that CD8+ cells are crucial for protection. In order to develop a vaccine that stimulates an effective anti-ASFV T-cell response we need to know which of the >150 viral proteins are recognized by the cellular immune response. Therefore, we used a gamma interferon ELIspot assay to screen for viral proteins recognized by lymphocytes from ASF-immune pigs using peptides corresponding to 133 proteins predicted to be encoded by OUR T88/3. Eighteen antigens that were recognized by ASFV-specific lymphocytes were then incorporated into adenovirus and MVA vectors, which were used in immunization and challenge experiments in pigs. We present a systematic characterization of the cellular immune response to this devastating disease and identify proteins capable of inducing ASFV-specific cellular and humoral immune responses in pigs. Pools of viral vectors expressing these genes did not protect animals from severe disease, but did reduce viremia in a proportion of pigs following ASFV challenge.


Asunto(s)
Virus de la Fiebre Porcina Africana/inmunología , Fiebre Porcina Africana/inmunología , Antígenos Virales/inmunología , Proteínas Virales/inmunología , Adenoviridae/inmunología , Animales , Linfocitos T CD8-positivos/inmunología , Vectores Genéticos/inmunología , Inmunidad Celular/inmunología , Inmunidad Humoral/inmunología , Inmunización/métodos , Porcinos , Vacunación/métodos , Vacunas Virales/inmunología , Viremia/inmunología , Virulencia/inmunología
2.
Front Immunol ; 8: 813, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28747915

RESUMEN

After the discovery of naturally occurring severe combined immunodeficiency (SCID) within a selection line of pigs at Iowa State University, we found two causative mutations in the Artemis gene: haplotype 12 (ART12) and haplotype 16 (ART16). Bone marrow transplants (BMTs) were performed to create genetically SCID and phenotypically immunocompetent breeding animals to establish a SCID colony for further characterization and research utilization. Of nine original BMT transfer recipients, only four achieved successful engraftment. At approximately 11 months of age, both animals homozygous for the ART16 mutation were diagnosed with T cell lymphoma. One of these ART16/ART16 recipients was a male who received a transplant from a female sibling; the tumors in this recipient consist primarily of Y chromosome-positive cells. The other ART16/ART16 animal also presented with leukemia in addition to T cell lymphoma, while one of the ART12/ART16 compound heterozygote recipients presented with a nephroblastoma at a similar age. Human Artemis SCID patients have reported cases of lymphoma associated with a "leaky" Artemis phenotype. The naturally occurring Artemis SCID pig offers a large animal model more similar to human SCID patients and may offer a naturally occurring cancer model and provides a valuable platform for therapy development.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...