Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Antioxidants (Basel) ; 13(3)2024 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-38539805

RESUMEN

Thrombotic microangiopathy has been identified as a dominant mechanism for increased mortality and morbidity in coronavirus disease 2019 (COVID-19). In the context of severe COVID-19, patients may develop immunothrombosis within the microvasculature of the lungs, which contributes to the development of acute respiratory distress syndrome (ARDS), a leading cause of death in the disease. Immunothrombosis is thought to be mediated in part by increased levels of cytokines, fibrin clot formation, and oxidative stress. Glutathione (GSH), a well-known antioxidant molecule, may have therapeutic effects in countering this pathway of immunothrombosis as decreased levels of (GSH) have been associated with increased viral replication, cytokine levels, and thrombosis, suggesting that glutathione supplementation may be therapeutic for COVID-19. GSH supplementation has never been explored as a means of treating COVID-19. This study investigated the effectiveness of liposomal glutathione (GSH) as an adjunctive therapy for peripheral blood mononuclear cells (PBMC) treated with SARS CoV-2 spike protein. Upon the addition of GSH to cell cultures, cytokine levels, fibrin clot formation, oxidative stress, and intracellular GSH levels were measured. The addition of liposomal-GSH to PBMCs caused a statistically significant decrease in cytokine levels, fibrin clot formation, and oxidative stress. The addition of L-GSH to spike protein and untreated PBMCs increased total intracellular GSH, decreased IL-6, TGF-beta, and TNF-alpha levels, decreased oxidative stress, as demonstrated through MDA, and decreased fibrin clot formation, as detected by fluorescence microscopy. These findings demonstrate that L-GSH supplementation within a spike protein-treated PBMC cell culture model reduces these factors, suggesting that GSH supplementation should be explored as a means of reducing mediators of immunothrombosis in COVID-19.

2.
Discov Med ; 36(182): 437-447, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38531785

RESUMEN

This research project delves into the multifaceted dynamics of Mycobacterium tuberculosis (M.tb) endocarditis, a significant yet uncommon manifestation of tuberculosis (TB). Beginning with an overview of M.tb and the global challenges posed by TB, we navigate through the bacterium's evolution, transmission modes, and the intricate host immune response. The pathology and pathophysiology of M.tb endocarditis are explored, emphasizing its complexities and the host's efforts to contain the pathogen. The study extends to atypical mycobacterial endocarditis, highlighting the emergence of species like M.chimaera, M.fortuitum, and M.chelonae, with a focus on their association with life-threatening mycobacterial endocarditis. Clinical presentations and complications of M.tb endocarditis are detailed, addressing challenges in diagnosis, drug-resistant, co-infections with Human Immunodeficiency Virus (HIV), and potential sepsis. The research underscores the need for a deeper understanding of M.tb endocarditis to enhance prevention, diagnosis, and treatment strategies. Examining the genetic and environmental factors influencing M.tb endocarditis, the study discusses the interplay of immune-related genes, environmental conditions, and predispositions contributing to infection susceptibility. Despite challenges in treatment due to its rarity, the research highlights current protocols, surgical interventions, and promising pharmaceutical developments. Lastly, unraveling these intricate factors is crucial for refining strategies and conducting large-scale trials to address this global health threat effectively.


Asunto(s)
Endocarditis , Mycobacterium tuberculosis , Tuberculosis , Humanos , Mycobacterium tuberculosis/genética , Tuberculosis/prevención & control
4.
Sci Rep ; 12(1): 1206, 2022 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-35075180

RESUMEN

SARS-CoV-2 is spreading worldwide with continuously evolving variants, some of which occur in the Spike protein and appear to increase viral transmissibility. However, variants that cause severe COVID-19 or lead to other breakthroughs have not been well characterized. To discover such viral variants, we assembled a cohort of 683 COVID-19 patients; 388 inpatients ("cases") and 295 outpatients ("controls") from April to August 2020 using electronically captured COVID test request forms and sequenced their viral genomes. To improve the analytical power, we accessed 7137 viral sequences in Washington State to filter out viral single nucleotide variants (SNVs) that did not have significant expansions over the collection period. Applying this filter led to the identification of 53 SNVs that were statistically significant, of which 13 SNVs each had 3 or more variant copies in the discovery cohort. Correlating these selected SNVs with case/control status, eight SNVs were found to significantly associate with inpatient status (q-values < 0.01). Using temporal synchrony, we identified a four SNV-haplotype (t19839-g28881-g28882-g28883) that was significantly associated with case/control status (Fisher's exact p = 2.84 × 10-11). This haplotype appeared in April 2020, peaked in June, and persisted into January 2021. The association was replicated (OR = 5.46, p-value = 4.71 × 10-12) in an independent cohort of 964 COVID-19 patients (June 1, 2020 to March 31, 2021). The haplotype included a synonymous change N73N in endoRNase, and three non-synonymous changes coding residues R203K, R203S and G204R in the nucleocapsid protein. This discovery points to the potential functional role of the nucleocapsid protein in triggering "cytokine storms" and severe COVID-19 that led to hospitalization. The study further emphasizes a need for tracking and analyzing viral sequences in correlations with clinical status.


Asunto(s)
COVID-19 , Haplotipos , Hospitalización , Mutación , SARS-CoV-2/genética , COVID-19/epidemiología , COVID-19/genética , COVID-19/terapia , Femenino , Humanos , Masculino , Washingtón/epidemiología
5.
Front Immunol ; 12: 782152, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34868058

RESUMEN

Minor histocompatibility antigens (mHAg) composed of peptides presented by HLA molecules can cause immune responses involved in graft-versus-host disease (GVHD) and graft-versus-leukemia effects after allogeneic hematopoietic cell transplantation (HCT). The current study was designed to identify individual graft-versus-host genomic mismatches associated with altered risks of acute or chronic GVHD or relapse after HCT between HLA-genotypically identical siblings. Our results demonstrate that in allogeneic HCT between a pair of HLA-identical siblings, a mHAg manifests as a set of peptides originating from annotated proteins and non-annotated open reading frames, which i) are encoded by a group of highly associated recipient genomic mismatches, ii) bind to HLA allotypes in the recipient, and iii) evoke a donor immune response. Attribution of the immune response and consequent clinical outcomes to individual peptide components within this set will likely differ from patient to patient according to their HLA types.


Asunto(s)
Trasplante de Células Madre Hematopoyéticas , Antígenos de Histocompatibilidad Menor/inmunología , Inmunología del Trasplante , Adolescente , Adulto , Anciano , Alelos , Niño , Preescolar , Susceptibilidad a Enfermedades/inmunología , Femenino , Predisposición Genética a la Enfermedad , Variación Genética , Enfermedad Injerto contra Huésped/epidemiología , Enfermedad Injerto contra Huésped/etiología , Antígenos HLA/genética , Antígenos HLA/inmunología , Trasplante de Células Madre Hematopoyéticas/efectos adversos , Trasplante de Células Madre Hematopoyéticas/métodos , Humanos , Incidencia , Lactante , Recién Nacido , Desequilibrio de Ligamiento , Masculino , Persona de Mediana Edad , Antígenos de Histocompatibilidad Menor/genética , Péptidos/genética , Péptidos/inmunología , Trasplante Homólogo , Adulto Joven
6.
Am J Physiol Lung Cell Mol Physiol ; 309(7): L653-61, 2015 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-26254423

RESUMEN

Airway smooth muscle (ASM) in vivo is constantly subjected to oscillatory strain due to tidal breathing and deep inspirations. ASM contractility is known to be adversely affected by strains, especially those of large amplitudes. Based on the cross-bridge model of contraction, it is likely that strain impairs force generation by disrupting actomyosin cross-bridge interaction. There is also evidence that strain modulates muscle stiffness and force through induction of cytoskeletal remodeling. However, the molecular mechanism by which strain alters smooth muscle function is not entirely clear. Here, we examine the response of ASM to iso-velocity stretches to probe the components within the muscle preparation that give rise to different features in the force response. We found in ASM that force response to a ramp stretch showed a biphasic feature, with the initial phase associated with greater muscle stiffness compared with that in the later phase, and that the transition between the phases occurred at a critical strain of ∼3.3%. Only strains with amplitudes greater than the critical strain could lead to reduction in force and stiffness of the muscle in the subsequent stretches. The initial-phase stiffness was found to be linearly related to the degree of muscle activation, suggesting that the stiffness stems mainly from attached cross bridges. Both phases were affected by the degree of muscle activation and by inhibitors of myosin light-chain kinase, PKC, and Rho-kinase. Different responses due to different interventions suggest that cross-bridge and cytoskeletal stiffness is regulated differently by the kinases.


Asunto(s)
Contracción Muscular/fisiología , Fuerza Muscular/fisiología , Músculo Liso/fisiología , Mecánica Respiratoria/fisiología , Sistema Respiratorio , Animales , Citoesqueleto/metabolismo , Quinasa de Cadena Ligera de Miosina/metabolismo , Proteína Quinasa C/metabolismo , Ovinos , Quinasas Asociadas a rho/metabolismo
7.
Can J Physiol Pharmacol ; 93(3): 163-9, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25615545

RESUMEN

Airway smooth muscle (ASM) plays a central role in the excessive narrowing of the airway that characterizes the primary functional impairment in asthma. This phenomenon is known as airway hyper-responsiveness (AHR). Emerging evidence suggests that the development and maintenance of ASM force involves dynamic reorganization of the subcellular filament network in both the cytoskeleton and the contractile apparatus. In this review, evidence is presented to support the view that regulation of ASM contraction extends beyond the classical actomyosin interaction and involves processes within the cytoskeleton and at the interfaces between the cytoskeleton, the contractile apparatus, and the extracellular matrix. These processes are initiated when the muscle is activated, and collectively they cause the cytoskeleton and the contractile apparatus to undergo structural transformation, resulting in a more connected and solid state that allows force generated by the contractile apparatus to be transmitted to the extracellular domain. Solidification of the cytoskeleton also serves to stiffen the muscle and hence the airway. Oscillatory strain from tidal breathing and deep inspiration is believed to be the counter balance that prevents hypercontraction and stiffening of ASM in vivo. Dysregulation of this balance could lead to AHR seen in asthma.


Asunto(s)
Pulmón/fisiología , Músculo Liso/fisiología , Asma/fisiopatología , Citoesqueleto/fisiología , Humanos , Pulmón/crecimiento & desarrollo , Modelos Biológicos , Desarrollo de Músculos/fisiología , Músculo Liso/crecimiento & desarrollo
8.
Am J Physiol Lung Cell Mol Physiol ; 308(1): L1-10, 2015 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-25305246

RESUMEN

Smooth muscle contraction can be divided into two phases: the initial contraction determines the amount of developed force and the second phase determines how well the force is maintained. The initial phase is primarily due to activation of actomyosin interaction and is relatively well understood, whereas the second phase remains poorly understood. Force maintenance in the sustained phase can be disrupted by strains applied to the muscle; the strain causes actomyosin cross-bridges to detach and also the cytoskeletal structure to disassemble in a process known as fluidization, for which the underlying mechanism is largely unknown. In the present study we investigated the ability of airway smooth muscle to maintain force after the initial phase of contraction. Specifically, we examined the roles of Rho-kinase and protein kinase C (PKC) in force maintenance. We found that for the same degree of initial force inhibition, Rho-kinase substantially reduced the muscle's ability to sustain force under static conditions, whereas inhibition of PKC had a minimal effect on sustaining force. Under oscillatory strain, Rho-kinase inhibition caused further decline in force, but again, PKC inhibition had a minimal effect. We also found that Rho-kinase inhibition led to a decrease in the myosin filament mass in the muscle cells, suggesting that one of the functions of Rho-kinase is to stabilize myosin filaments. The results also suggest that dissolution of myosin filaments may be one of the mechanisms underlying the phenomenon of fluidization. These findings can shed light on the mechanism underlying deep inspiration induced bronchodilation.


Asunto(s)
Contracción Muscular/fisiología , Fuerza Muscular/fisiología , Músculo Liso/fisiología , Miosinas/metabolismo , Tráquea/fisiología , Quinasas Asociadas a rho/metabolismo , Actomiosina/metabolismo , Animales , Inhalación/fisiología , Proteína Quinasa C/metabolismo , Ovinos
9.
PLoS One ; 9(8): e103044, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25121500

RESUMEN

PGC-1α regulates critical processes in muscle physiology, including mitochondrial biogenesis, lipid metabolism and angiogenesis. Furthermore, PGC-1α was suggested as an important regulator of fiber type determination. However, whether a muscle fiber type-specific PGC-1α content exists, whether PGC-1α content relates to basal levels of mitochondrial content, and whether such relationships are preserved between humans and classically used rodent models are all questions that have been either poorly addressed or never investigated. To address these issues, we investigated the fiber type-specific content of PGC-1α and its relationship to basal mitochondrial content in mouse, rat and human muscles using in situ immunolabeling and histochemical methods on muscle serial cross-sections. Whereas type IIa fibers exhibited the highest PGC-1α in all three species, other fiber types displayed a hierarchy of type IIx>I>IIb in mouse, type I = IIx> IIb in rat, and type IIx>I in human. In terms of mitochondrial content, we observed a hierarchy of IIa>IIx>I>IIb in mouse, IIa >I>IIx> IIb in rat, and I>IIa> IIx in human skeletal muscle. We also found in rat skeletal muscle that type I fibers displayed the highest capillarization followed by type IIa >IIx>IIb. Finally, we found in human skeletal muscle that type I fibers display the highest lipid content, followed by type IIa>IIx. Altogether, our results reveal that (i) the fiber type-specific PGC-1α and mitochondrial contents were only matched in mouse, (ii) the patterns of PGC-1α and mitochondrial contents observed in mice and rats do not correspond to that seen in humans in several respects, and (iii) the classical phenotypes thought to be regulated by PGC-1α do not vary exclusively as a function of PGC-1α content in rat and human muscles.


Asunto(s)
Mitocondrias/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Factores de Transcripción/metabolismo , Animales , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Cadenas Pesadas de Miosina/metabolismo , Ratas , Ratas Endogámicas BN , Ratas Endogámicas F344
10.
FASEB J ; 28(4): 1621-33, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24371120

RESUMEN

Mitochondrial dysfunction is implicated in skeletal muscle atrophy and dysfunction with aging, with strong support for an increased mitochondrial-mediated apoptosis in sedentary rodent models. Whether this applies to aged human muscle is unknown, nor is it clear whether these changes are caused by sedentary behavior. Thus, we examined mitochondrial function [respiration, reactive oxygen species (ROS) emission, and calcium retention capacity (CRC)] in permeabilized myofibers obtained from vastus lateralis muscle biopsies of healthy physically active young (23.7±2.7 yr; mean±SD) and older (71.2±4.9 yr) men. Although mitochondrial ROS and maximal respiratory capacity were unaffected, the acceptor control ratio was reduced by 18% with aging, suggesting mild uncoupling of oxidative phosphorylation. CRC was reduced by 50% with aging, indicating sensitization of the mitochondrial permeability transition pore (mPTP) to apoptosis. Consistent with the mPTP sensitization, older muscles showed a 3-fold greater fraction of endonuclease G (a mitochondrial proapoptotic factor)-positive myonuclei. Aged muscles also had lower mitophagic potential, based on a 43% reduction in Parkin to the voltage-dependent anion channel (VDAC) protein ratio. Collectively, these results show that mitochondrial-mediated apoptotic signaling is increased in older human muscle and suggest that accumulation of dysfunctional mitochondria with exaggerated apoptotic sensitivity is due to impaired mitophagy.


Asunto(s)
Núcleo Celular/metabolismo , Endodesoxirribonucleasas/metabolismo , Mitocondrias/metabolismo , Atrofia Muscular/metabolismo , Transporte Activo de Núcleo Celular , Adulto , Anciano , Envejecimiento/metabolismo , Apoptosis , Biopsia , Calcio/metabolismo , Humanos , Immunoblotting , Imagen por Resonancia Magnética , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Poro de Transición de la Permeabilidad Mitocondrial , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Músculo Esquelético/fisiopatología , Atrofia Muscular/patología , Atrofia Muscular/fisiopatología , Permeabilidad , Especies Reactivas de Oxígeno/metabolismo , Adulto Joven
11.
J Physiol ; 591(23): 5867-78, 2013 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-24081161

RESUMEN

Myosin molecules from smooth muscle and non-muscle cells are known to self-assemble into side-polar filaments in vitro. However, the in situ mechanism of filament assembly is not clear and the question of whether there is a unique length for myosin filaments in smooth muscle is still under debate. In this study we measured the lengths of 16,587 myosin filaments in three types of smooth muscle cells using serial electron microscopy (EM). Sheep airway and pulmonary arterial smooth muscle as well as rabbit carotid arterial smooth muscle were fixed for EM and serial ultra-thin (50-60 nm) sections were obtained. Myosin filaments were traced in consecutive sections to determine their lengths. The results indicate that there is not a single length for the myosin filaments; instead there is a wide variation in lengths. The plots of observation frequency versus myosin filament length follow an exponential decay pattern. Analysis suggests that in situ assembly of myosin filaments in smooth muscle is governed by random processes of linear polymerization and de-polymerization, and that the dynamic equilibrium of these processes determines the observed length distribution.


Asunto(s)
Miocitos del Músculo Liso/ultraestructura , Miosinas/ultraestructura , Animales , Arterias Carótidas/citología , Diafragma/ultraestructura , Ratones , Ratones Endogámicos C57BL , Microscopía Electrónica , Arteria Pulmonar/citología , Conejos , Ovinos , Tráquea/citología
12.
J Appl Physiol (1985) ; 115(10): 1540-52, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24072407

RESUMEN

The structurally dynamic cytoskeleton is important in many cell functions. Large gaps still exist in our knowledge regarding what regulates cytoskeletal dynamics and what underlies the structural plasticity. Because Rho-kinase is an upstream regulator of signaling events leading to phosphorylation of many cytoskeletal proteins in many cell types, we have chosen this kinase as the focus of the present study. In detergent skinned tracheal smooth muscle preparations, we quantified the proteins eluted from the muscle cells over time and monitored the muscle's ability to respond to acetylcholine (ACh) stimulation to produce force and stiffness. In a partially skinned preparation not able to generate active force but could still stiffen upon ACh stimulation, we found that the ACh-induced stiffness was independent of calcium and myosin light chain phosphorylation. This indicates that the myosin light chain-dependent actively cycling crossbridges are not likely the source of the stiffness. The results also indicate that Rho-kinase is central to the ACh-induced stiffness, because inhibition of the kinase by H1152 (1 µM) abolished the stiffening. Furthermore, the rate of relaxation of calcium-induced stiffness in the skinned preparation was faster than that of ACh-induced stiffness, with or without calcium, suggesting that different signaling pathways lead to different means of maintenance of stiffness in the skinned preparation.


Asunto(s)
Citoesqueleto/enzimología , Contracción Muscular , Miocitos del Músculo Liso/enzimología , Tráquea/enzimología , Quinasas Asociadas a rho/metabolismo , 1-(5-Isoquinolinesulfonil)-2-Metilpiperazina/análogos & derivados , 1-(5-Isoquinolinesulfonil)-2-Metilpiperazina/farmacología , Acetilcolina/farmacología , Animales , Calcio/metabolismo , Forma de la Célula , Elasticidad , Contracción Muscular/efectos de los fármacos , Miocitos del Músculo Liso/efectos de los fármacos , Cadenas Ligeras de Miosina/metabolismo , Fosforilación , Inhibidores de Proteínas Quinasas/farmacología , Ovinos , Transducción de Señal , Factores de Tiempo , Tráquea/citología , Tráquea/efectos de los fármacos , Quinasas Asociadas a rho/antagonistas & inhibidores
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA