Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cell Mol Life Sci ; 70(9): 1653-61, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23250353

RESUMEN

Nickel is considered to be a selective blocker of low-voltage-activated T-type calcium channel. Recently, the Ni(2+)-binding site with critical histidine-191 (H191) within the extracellular IS3-IS4 domain of the most Ni(2+)-sensitive Cav3.2 T-channel isoform has been identified. All calcium channels are postulated to also have intrapore-binding site limiting maximal current carried by permeating divalent cations (PDC) and determining the blockade by non-permeating ones. However, the contribution of the two sites to the overall Ni(2+) effect and its dependence on PDC remain uncertain. Here we compared Ni(2+) action on the wild-type "Ni(2+)-insensitive" Cav3.1w/t channel and Cav3.1Q172H mutant having glutamine (Q) equivalent to H191 of Cav3.2 replaced by histidine. Each channel was expressed in Xenopus oocytes, and Ni(2+) blockade of Ca(2+), Sr(2+), or Ba(2+) currents was assessed by electrophysiology. Inhibition of Cav3.1w/t by Ni(2+) conformed to two sites binding. Ni(2+) binding with high-affinity site (IC50 = 0.03-3 µM depending on PDC) produced maximal inhibition of 20-30% and was voltage-dependent, consistent with its location within the channel's pore. Most of the inhibition (70-80%) was produced by Ni(2+) binding with low-affinity site (IC50 = 240-700 µM). Q172H-mutation mainly affected low-affinity binding (IC50 = 120-160 µM). The IC50 of Ni(2+) binding with both sites in the Cav3.1w/t and Cav3.1Q172H was differentially modulated by PDC, suggesting a varying degree of competition of Ca(2+), Sr(2+), or Ba(2+) with Ni(2+). We conclude that differential Ni(2+)-sensitivity of T-channel subtypes is determined only by H-containing external binding sites, which, in the absence of Ni(2+), may be occupied by PDC, influencing in turn the channel's permeation.


Asunto(s)
Canales de Calcio Tipo T/metabolismo , Níquel/metabolismo , Sustitución de Aminoácidos , Animales , Sitios de Unión , Canales de Calcio Tipo T/química , Canales de Calcio Tipo T/genética , Cationes Bivalentes/metabolismo , Células Cultivadas , Femenino , Expresión Génica , Oocitos/metabolismo , Unión Proteica , Ratas , Xenopus
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...