Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Plant Physiol ; 187(3): 1653-1678, 2021 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-34618070

RESUMEN

Increasing industrial and anthropogenic activities are producing and releasing more and more pollutants in the environment. Among them, toxic metals are one of the major threats for human health and natural ecosystems. Because photosynthetic organisms play a critical role in primary productivity and pollution management, investigating their response to metal toxicity is of major interest. Here, the green microalga Chlamydomonas (Chlamydomonas reinhardtii) was subjected to short (3 d) or chronic (6 months) exposure to 50 µM cadmium (Cd), and the recovery from chronic exposure was also examined. An extensive phenotypic characterization and transcriptomic analysis showed that the impact of Cd on biomass production of short-term (ST) exposed cells was almost entirely abolished by long-term (LT) acclimation. The underlying mechanisms were initiated at ST and further amplified after LT exposure resulting in a reversible equilibrium allowing biomass production similar to control condition. This included modification of cell wall-related gene expression and biofilm-like structure formation, dynamics of metal ion uptake and homeostasis, photosynthesis efficiency recovery and Cd acclimation through metal homeostasis adjustment. The contribution of the identified coordination of phosphorus and iron homeostasis (partly) mediated by the main phosphorus homeostasis regulator, Phosphate Starvation Response 1, and a basic Helix-Loop-Helix transcription factor (Cre05.g241636) was further investigated. The study reveals the highly dynamic physiological plasticity enabling algal cell growth in an extreme environment.


Asunto(s)
Aclimatación , Adaptación Fisiológica , Cadmio/metabolismo , Chlamydomonas/efectos de los fármacos , Biomasa , Chlamydomonas/fisiología , Factores de Tiempo
2.
J Exp Bot ; 70(1): 329-341, 2019 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-30418580

RESUMEN

The P1B ATPase heavy metal ATPase 4 (HMA4) is responsible for zinc and cadmium translocation from roots to shoots in Arabidopsis thaliana. It couples ATP hydrolysis to cytosolic domain movements, enabling metal transport across the membrane. The detailed mechanism of metal permeation by HMA4 through the membrane remains elusive. Here, homology modeling of the HMA4 transmembrane region was conducted based on the crystal structure of a ZntA bacterial homolog. The analysis highlighted amino acids forming a metal permeation pathway, whose importance was subsequently investigated functionally through mutagenesis and complementation experiments in plants. Although the zinc pathway displayed overall conservation among the two proteins, significant differences were observed, especially in the entrance area with altered electronegativity and the presence of a ionic interaction/hydrogen bond network. The analysis also newly identified amino acids whose mutation results in total or partial loss of the protein function. In addition, comparison of zinc and cadmium accumulation in shoots of A. thaliana complemented lines revealed a number of HMA4 mutants exhibiting different abilities in zinc and cadmium translocation. These observations could be instrumental to design low cadmium-accumulating crops, hence decreasing human cadmium exposure.


Asunto(s)
Adenosina Trifosfatasas/genética , Proteínas de Arabidopsis/genética , Arabidopsis/genética , Zinc/metabolismo , Adenosina Trifosfatasas/metabolismo , Arabidopsis/enzimología , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Transporte Biológico , Modelos Genéticos , Homología Estructural de Proteína
3.
New Phytol ; 218(1): 269-282, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29292833

RESUMEN

Zinc (Zn) hyperaccumulation and hypertolerance are highly variable traits in Arabidopsis halleri. Metallicolous populations have evolved from nearby nonmetallicolous populations in multiple independent adaptation events. To determine whether these events resulted in similar or divergent adaptive strategies to high soil Zn concentrations, we compared two A. halleri metallicolous populations from distant genetic units in Europe (Poland (PL22) and Italy (I16)). The ionomic (Inductively Coupled Plasma Atomic Emission Spectroscopy (ICP-AES)) and transcriptomic (RNA sequencing (RNA-Seq)) responses to growth at 5 and 150 µM Zn were analyzed in root and shoot tissues to examine the contribution of the geographic origin and treatment to variation among populations. These analyses were enabled by the generation of a reference A. halleri transcriptome assembly. The genetic unit accounted for the largest variation in the gene expression profile, whereas the two populations had contrasting Zn accumulation phenotypes and shared little common response to the Zn treatment. The PL22 population displayed an iron deficiency response at high Zn in roots and shoots, which may account for higher Zn accumulation. By contrast, I16, originating from a highly Zn-contaminated soil, strongly responded to control conditions. Our data suggest that distinct mechanisms support adaptation to high Zn in soils among A. halleri metallicolous populations.


Asunto(s)
Adaptación Fisiológica/efectos de los fármacos , Arabidopsis/fisiología , Zinc/toxicidad , Adaptación Fisiológica/genética , Arabidopsis/efectos de los fármacos , Arabidopsis/genética , Clorofila/metabolismo , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Geografía , Homeostasis , Hierro/metabolismo , Modelos Biológicos , Fenotipo , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/metabolismo , Brotes de la Planta/efectos de los fármacos , Brotes de la Planta/metabolismo , Análisis de Componente Principal , Transcriptoma/efectos de los fármacos , Transcriptoma/genética
4.
J Exp Bot ; 66(19): 5783-95, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26044091

RESUMEN

In Arabidopsis halleri, the HMA4 gene has an essential function in Zn/Cd hypertolerance and hyperaccumulation by mediating root-to-shoot translocation of metals. Constitutive high expression of AhHMA4 results from a tandem triplication and cis-activation of the promoter of all three copies. The three AhHMA4 copies possess divergent promoter sequences, but highly conserved coding sequences, and display identical expression profiles in the root and shoot vascular system. Here, an AhHMA4::GFP fusion was expressed under the control of each of the three A. halleri HMA4 promoters in a hma2hma4 double mutant of A. thaliana to individually examine the function of each AhHMA4 copy. The protein showed non-polar localization at the plasma membrane of the root pericycle cells of both A. thaliana and A. halleri. The expression of each AhHMA4::GFP copy complemented the severe Zn-deficiency phenotype of the hma2hma4 mutant by restoring root-to-shoot translocation of Zn. However, each copy had a different impact on metal homeostasis in the A. thaliana genetic background: AhHMA4 copies 2 and 3 were more highly expressed and provided higher Zn tolerance in roots and accumulation in shoots than copy 1, and AhHMA4 copy 3 also increased Cd tolerance in roots. These data suggest a certain extent of functional differentiation among the three A. halleri HMA4 copies, stemming from differences in expression levels rather than in expression profile. HMA4 is a key node of the Zn homeostasis network and small changes in expression level can have a major impact on Zn allocation to root or shoot tissues.


Asunto(s)
Adenosina Trifosfatasas/genética , Proteínas de Arabidopsis/genética , Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas , Adenosina Trifosfatasas/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , ADN Complementario/genética , ADN Complementario/metabolismo , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Homeostasis , Metales/metabolismo , Mutación , Regiones Promotoras Genéticas , Análisis de Secuencia de ADN
5.
J Exp Bot ; 66(13): 3865-78, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25900619

RESUMEN

In Arabidopsis thaliana, FRD3 (FERRIC CHELATE REDUCTASE DEFECTIVE 3) plays a central role in metal homeostasis. FRD3 is among a set of metal homeostasis genes that are constitutively highly expressed in roots and shoots of Arabidopsis halleri, a zinc hyperaccumulating and hypertolerant species. Here, we examined the regulation of FRD3 by zinc in both species to shed light on the evolutionary processes underlying the evolution of hyperaccumulation in A. halleri. We combined gene expression studies with the use of ß-glucuronidase and green fluorescent protein reporter constructs to compare the expression profile and transcriptional and post-transcriptional regulation of FRD3 in both species. The AtFRD3 and AhFRD3 genes displayed a conserved expression profile. In A. thaliana, alternative transcription initiation sites from two promoters determined transcript variants that were differentially regulated by zinc supply in roots and shoots to favour the most highly translated variant under zinc-excess conditions. In A. halleri, a single transcript variant with higher transcript stability and enhanced translation has been maintained. The FRD3 gene thus undergoes complex transcriptional and post-transcriptional regulation in Arabidopsis relatives. Our study reveals that a diverse set of mechanisms underlie increased gene dosage in the A. halleri lineage and illustrates how an environmental challenge can alter gene regulation.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Genes de Plantas , Homeostasis/genética , Proteínas de Transporte de Membrana/genética , Transcripción Genética/efectos de los fármacos , Zinc/farmacología , Regiones no Traducidas 5'/genética , Arabidopsis/efectos de los fármacos , Proteínas de Arabidopsis/metabolismo , Perfilación de la Expresión Génica , Genotipo , Homeostasis/efectos de los fármacos , Proteínas de Transporte de Membrana/metabolismo , Biosíntesis de Proteínas/efectos de los fármacos , Estabilidad del ARN/efectos de los fármacos , Estabilidad del ARN/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Sitio de Iniciación de la Transcripción
6.
Cell Metab ; 18(4): 567-77, 2013 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-24055101

RESUMEN

Our understanding of the mechanisms involved in mitochondrial biogenesis has continuously expanded during the last decades, yet little is known about how they are modulated to optimize the functioning of mitochondria. Here, we show that mutations in the ATP binding domain of Bcs1, a chaperone involved in the assembly of complex III, can be rescued by mutations that decrease the ATP hydrolytic activity of the ATP synthase. Our results reveal a Bcs1-mediated control loop in which the biogenesis of complex III is modulated by the energy-transducing activity of mitochondria. Although ATP is well known as a regulator of a number of cellular activities, we show here that ATP can be also used to modulate the biogenesis of an enzyme by controlling a specific chaperone involved in its assembly. Our study further highlights the intramitochondrial adenine nucleotide pool as a potential target for the treatment of Bcs1-based disorders.


Asunto(s)
Adenosina Trifosfato/farmacología , Complejo III de Transporte de Electrones/metabolismo , Proteínas de la Membrana/metabolismo , Mitocondrias/efectos de los fármacos , Proteínas Mitocondriales/metabolismo , Chaperonas Moleculares/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Complejos de ATP Sintetasa/metabolismo , ATPasas Asociadas con Actividades Celulares Diversas , Proteínas de la Membrana/química , Proteínas de la Membrana/genética , Mitocondrias/enzimología , Mitocondrias/metabolismo , Membranas Mitocondriales/metabolismo , Proteínas Mitocondriales/química , Proteínas Mitocondriales/genética , Chaperonas Moleculares/química , Chaperonas Moleculares/genética , Mutación , Estructura Terciaria de Proteína , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética
7.
Curr Opin Plant Biol ; 14(3): 252-9, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21531166

RESUMEN

In the course of evolution, plants adapted to widely differing metal availabilities in soils and therefore represent an important source of natural variation of metal homeostasis networks. Research on plant metal homeostasis can thus provide insights into the functioning, regulation and adaptation of biological networks. Here, we describe major recent breakthroughs in the understanding of the genetic and molecular basis of metal hyperaccumulation and associated hypertolerance, a naturally selected complex trait which represents an extreme adaptation of the metal homeostasis network. Investigations in this field reveal further the molecular alterations underlying the evolution of natural phenotypic diversity and provide a highly relevant framework for comparative genomics.


Asunto(s)
Adaptación Fisiológica/genética , Brassicaceae/metabolismo , Metales/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Evolución Biológica , Brassicaceae/genética , Regulación de la Expresión Génica de las Plantas , Redes Reguladoras de Genes , Genómica , Modelos Biológicos , Fenotipo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raíces de Plantas/genética , Raíces de Plantas/metabolismo , Brotes de la Planta/genética , Brotes de la Planta/metabolismo , Suelo , Contaminantes del Suelo/metabolismo , Especificidad de la Especie , Especificidad por Sustrato , Thlaspi/genética , Thlaspi/metabolismo
8.
Trends Plant Sci ; 16(7): 395-404, 2011 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-21489854

RESUMEN

Transition metal deficiency has a strong impact on the growth and survival of an organism. Indeed, transition metals, such as iron, copper, manganese and zinc, constitute essential cofactors for many key cellular functions. Both photosynthesis and respiration rely on metal cofactor-mediated electron transport chains. Chloroplasts and mitochondria are, therefore, organelles with high metal ion demand and represent essential components of the metal homeostasis network in photosynthetic cells. In this review, we describe the metal requirements of chloroplasts and mitochondria, the acclimation of their functions to metal deficiency and recent advances in our understanding of their contributions to cellular metal homeostasis, the control of the cellular redox status and the synthesis of metal cofactors.


Asunto(s)
Cloroplastos/metabolismo , Homeostasis , Metales/metabolismo , Mitocondrias/metabolismo , Plantas/metabolismo , Oxidación-Reducción , Fenómenos Fisiológicos de las Plantas
9.
Genetics ; 188(2): 349-58, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21467570

RESUMEN

Mitochondrial complex I is the largest multimeric enzyme of the respiratory chain. The lack of a model system with facile genetics has limited the molecular dissection of complex I assembly. Using Chlamydomonas reinhardtii as an experimental system to screen for complex I defects, we isolated, via forward genetics, amc1-7 nuclear mutants (for assembly of mitochondrial complex I) displaying reduced or no complex I activity. Blue native (BN)-PAGE and immunoblot analyses revealed that amc3 and amc4 accumulate reduced levels of the complex I holoenzyme (950 kDa) while all other amc mutants fail to accumulate a mature complex. In amc1, -2, -5-7, the detection of a 700 kDa subcomplex retaining NADH dehydrogenase activity indicates an arrest in the assembly process. Genetic analyses established that amc5 and amc7 are alleles of the same locus while amc1-4 and amc6 define distinct complementation groups. The locus defined by the amc5 and amc7 alleles corresponds to the NUOB10 gene, encoding PDSW, a subunit of the membrane arm of complex I. This is the first report of a forward genetic screen yielding the isolation of complex I mutants. This work illustrates the potential of using Chlamydomonas as a genetically tractable organism to decipher complex I manufacture.


Asunto(s)
Chlamydomonas reinhardtii/genética , Chlamydomonas reinhardtii/metabolismo , Complejo I de Transporte de Electrón/deficiencia , Complejo I de Transporte de Electrón/genética , Mutación , Complejo II de Transporte de Electrones/metabolismo , Complejo III de Transporte de Electrones/metabolismo , Complejo IV de Transporte de Electrones/metabolismo , Electroforesis en Gel de Poliacrilamida , Prueba de Complementación Genética , Genotipo , Immunoblotting , Mutagénesis Insercional , Consumo de Oxígeno
10.
J Mol Biol ; 388(2): 252-61, 2009 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-19285991

RESUMEN

The mitochondrial protein Bcs1p is conserved from Saccharomyces cerevisiae to humans and its C-terminal region exhibits an AAA (ATPases associated with diverse cellular activities) domain. The absence of the yeast Bcs1p leads to an assembly defect of the iron-sulfur protein (ISP) subunit within the mitochondrial respiratory complex III, whereas human point mutations located all along the protein cause various pathologies. We have performed a structure-function analysis of the yeast Bcs1p by randomly generating a collection of respiratory-deficient point mutants. We showed that most mutations are in the C-terminal region of Bcs1p and have localized them on a theoretical three-dimensional model based on the structure of several AAA proteins. The mutations can be grouped into classes according to their respiratory competence and their location on the three-dimensional model. We have further characterized five mutants, each substituting an amino acid conserved in yeast and mammalian Bcs1 proteins but not in other AAA proteins. The effects on respiratory complex assembly and Bcs1p accumulation were analyzed. Intragenic and extragenic compensatory mutations able to restore complex III assembly to the mutants affecting the AAA domain were isolated. Our results bring new insights into the role of specific residues in critical regions that are also conserved in the human Bcs1p. We show that (1) residues located at the junction between the Bcs1p-specific and the AAA domains are important for the activity and stability of the protein and (2) the residue F342 is important for interactions with other partners or substrate proteins.


Asunto(s)
Proteínas de la Membrana/fisiología , Proteínas Mitocondriales/fisiología , Chaperonas Moleculares/fisiología , Proteínas de Saccharomyces cerevisiae/fisiología , ATPasas Asociadas con Actividades Celulares Diversas , Adenosina Trifosfatasas , Aminoácidos , Sitios de Unión , Secuencia Conservada , Complejo III de Transporte de Electrones , Humanos , Proteínas de la Membrana/genética , Proteínas Mitocondriales/genética , Chaperonas Moleculares/genética , Proteínas Mutantes , Mutación Puntual , Estructura Terciaria de Proteína , Proteínas de Saccharomyces cerevisiae/genética
11.
Genetics ; 175(3): 1105-15, 2007 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-17194787

RESUMEN

Oxa1p is a key component of the general membrane insertion machinery of eukaryotic respiratory complex subunits encoded by the mitochondrial genome. In this study, we have generated a respiratory-deficient mutant, oxa1-E65G-F229S, that contains two substitutions in the predicted intermembrane space domain of Oxa1p. The respiratory deficiency due to this mutation is compensated for by overexpressing RMD9. We show that Rmd9p is an extrinsic membrane protein facing the matrix side of the mitochondrial inner membrane. Its deletion leads to a pleiotropic effect on respiratory complex biogenesis. The steady-state level of all the mitochondrial mRNAs encoding respiratory complex subunits is strongly reduced in the Deltarmd9 mutant, and there is a slight decrease in the accumulation of two RNAs encoding components of the small subunit of the mitochondrial ribosome. Overexpressing RMD9 leads to an increase in the steady-state level of mitochondrial RNAs, and we discuss how this increase could suppress the oxa1 mutations and compensate for the membrane insertion defect of the subunits encoded by these mRNAs.


Asunto(s)
Complejo IV de Transporte de Electrones/metabolismo , Expresión Génica , Proteínas de la Membrana/metabolismo , Mitocondrias/metabolismo , Proteínas Mitocondriales/metabolismo , Proteínas Nucleares/metabolismo , ARN Mensajero/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Respiración de la Célula/genética , Biología Computacional , Citocromos/química , Complejo IV de Transporte de Electrones/genética , Immunoblotting , Proteínas de la Membrana/genética , Mitocondrias/genética , Proteínas Mitocondriales/genética , Mutagénesis , Proteínas Nucleares/genética , Proteínas de Saccharomyces cerevisiae/genética , Espectrofotometría
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...