Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 3 de 3
1.
Article En | MEDLINE | ID: mdl-35704095

Venetian quarantine 400 years ago was an important public health measure. Since 1900 this has been refined to include "challenge" or deliberate infection with pathogens be they viruses, bacteria, or parasites. Our focus is virology and ranges from the early experiments in Cuba with Yellow Fever Virus to the most widespread pathogen of our current times, COVID-19. The latter has so far caused over four million deaths worldwide and 190 million cases of the disease. Quarantine and challenge were also used to investigate the Spanish Influenza of 1918 which caused over 100 million deaths. We consider here the merits of the approach, that is the speeding up of knowledge in a practical sense leading to the more rapid licensing of vaccines and antimicrobials. At the core of quarantine and challenge initiatives is the design of the unit to allow safe confinement of the pathogen and protection of the staff. Most important though is the safety of volunteers. We can see now, as in 1900, that members of our society are prepared and willing to engage in these experiments for the public good. Our ethnology study, where the investigator observed the experiment from within the quarantine, gave us the first indication of changing attitudes amongst volunteers whilst in quarantine. These quarantine experiments, referred to as challenge studies, human infection studies, or "controlled human infection models" involve thousands of clinical samples taken over two to three weeks and can provide a wealth of immunological and molecular data on the infection itself and could allow the discovery of new targets for vaccines and therapeutics. The Yellow Fever studies from 121 years ago gave the impetus for development of a successful vaccine still used today whilst also uncovering the nature of the Yellow Fever agent, namely that it was a virus. We outline how carefully these experiments are approached and the necessity to have high quality units with self-contained air-flow along with extensive personal protective equipment for nursing and medical staff. Most important is the employment of highly trained scientific, medical and nursing staff. We face a future of emerging pathogens driven by the increasing global population, deforestation, climate change, antibiotic resistance and increased global travel. These emerging pathogens may be pathogens we currently are not aware of or have not caused outbreaks historically but could also be mutated forms of known pathogens including viruses such as influenza (H7N9, H5N1 etc.) and coronaviruses. This calls for challenge studies to be part of future pandemic preparedness as an additional tool to assist with the rapid development of broad-spectrum antimicrobials, immunomodulators and new vaccines.

2.
J Allergy (Cairo) ; 2012: 494085, 2012.
Article En | MEDLINE | ID: mdl-22481960

Inhaled bacterial lipopolysaccharides (LPSs) induce an acute tumour necrosis factor-alpha (TNF-α-) dependent inflammatory response in the murine airways mediated by Toll-like receptor 4 (TLR4) via the myeloid differentiation MyD88 adaptor protein pathway. However, the contractile response of the bronchial smooth muscle and the role of endogenous TNFα in this process have been elusive. We determined the in vivo respiratory pattern of C57BL/6 mice after intranasal LPS administration with or without the presence of increasing doses of methacholine (MCh). We found that LPS administration altered the basal and MCh-evoked respiratory pattern that peaked at 90 min and decreased thereafter in the next 48 h, reaching basal levels 7 days later. We investigated in controlled ex vivo condition the isometric contraction of isolated tracheal rings in response to MCh cholinergic stimulation. We observed that preincubation of the tracheal rings with LPS for 90 min enhanced the subsequent MCh-induced contractile response (hyperreactivity), which was prevented by prior neutralization of TNFα with a specific antibody. Furthermore, hyperreactivity induced by LPS depended on an intact epithelium, whereas hyperreactivity induced by TNFα was well maintained in the absence of epithelium. Finally, the enhanced contractile response to MCh induced by LPS when compared with control mice was not observed in tracheal rings from TLR4- or TNF- or TNF-receptor-deficient mice. We conclude that bacterial endotoxin-mediated hyperreactivity of isolated tracheal rings to MCh depends upon TLR4 integrity that signals the activation of epithelium, which release endogenous TNFα.

...