Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Med Sci Monit Basic Res ; 28: e933726, 2022 03 23.
Artículo en Inglés | MEDLINE | ID: mdl-35318298

RESUMEN

BACKGROUND Inflammation is the body's first response to an illness that causes irritation or infection. Inflammation is tightly correlated with aging, which is a progressive degenerative process. Conditioned medium (CM) from adipose tissue-derived mesenchymal stem cells (CM-ATMSCs) has been shown to stimulate collagen synthesis and dermal fibroblast migration, as well as reduce wrinkles and improve wound healing. This study aimed to observe the production of inflammatory modulators - interleukin (IL)-1alpha, IL-6, IL-10, and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-kappaB) - in CM-ATMSCs treated with fresh frozen plasma (FFP) at passages 3 (P3), 7, 11, and 15. MATERIAL AND METHODS ATMSCs P3 were obtained from liposuction of female donors, and the CM from ATMSCs was collected. Measurement of these cytokines was performed with ELISA. RESULTS At many passages, IL-6, a proinflammatory modulator, was discovered to be the most powerful modulator among FFP- and non-FFP-treated cells. However, CM-ATMSCs treated with FFP and in the late passage have significant differences (P<0.05) compared to non-FFP treatments and in other passages in their effects on secretion of inflammatory modulators. CONCLUSIONS In conclusion, CM-ATMSC has the potential to secrete proinflammatory modulators.


Asunto(s)
Mediadores de Inflamación , Células Madre Mesenquimatosas , Tejido Adiposo , Medios de Cultivo Condicionados/farmacología , Femenino , Humanos , Células Madre Mesenquimatosas/fisiología , Plasma
2.
Int J Mol Cell Med ; 8(4): 283-294, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-32587838

RESUMEN

Mesenchymal stem cells (MSCs) have unique properties, including high proliferation rates, self-renewal, and multilineage differentiation ability. Their characteristics are affected by increasing age and microenvironment. This research is aimed to determine the proliferation, characteristics and differentiation capacity of adipose tissue-derived (AT)-MSCs at many passages with different media. The cell proliferation capacity was assayed using trypan blue. MSCs characterization (CD90, CD44, CD105, CD73, CD11b, CD19, CD34, CD45, and HLA-DR) was performed by flow cytometry, and cell differentiation was determined by specific stainings. Population doubling time (PDT) of AT-MSCs treated with fresh frozen plasma (FFP) and non-FFP increased in the late passage (P) (P15 FFP was 22.67 ± 7.01 days and non-FFP was 19.65 ± 2.27 days). Cumulative cell number was significantly different between FFP and non-FFP at P5, 10, 15. AT-MSCs at P4-15 were positive for CD90, CD44, CD105, and CD73, and negative for CD11b, CD19, CD34, CD45, and HLA-DR surface markers. AT-MSCs at P5, 10, 15 had potential toward adipogenic, chondrogenic, and osteogenic differentiation. Therefore, PDT was affected by increased age but no difference was observed in morphology, surface markers and differentiation capacity among passages. Cumulative cell number in FFP was higher in comparison with non-FFP in P5, 10, 15. Our data suggest that FFP may replace FBS for culturing MSCs.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...